一种大功率激光选区熔化3D打印高铁制动盘的方法

    公开(公告)号:CN109807329B

    公开(公告)日:2021-04-23

    申请号:CN201910238112.3

    申请日:2019-03-27

    Applicant: 东北大学

    Abstract: 一种大功率激光选区熔化3D打印高铁制动盘的方法,包括以下步骤:(1)制动盘模型导入3D打印软件中,设置制动盘模型倾斜;(2)通过软件在制动盘模型和基板模型之间添加支撑模型,支撑模型分为圆柱形支撑模型、方块形支撑模型和薄壁形支撑模型;(3)设定圆柱形支撑、上薄壁、下薄壁、外薄壁、内薄壁、第一中薄壁和第二中薄壁的尺寸;(4)对制动盘模型和全部支撑模型进行切片;(5)型导到快速成型制造系统,进行激光选区熔化成形,(6)实体取出后退火处理,切割并打磨。本发明的方法解决了制动盘悬空结构的成形以及成形过程中零件变形开裂的问题,显著提高了零件成形效率,解决了高铁制动盘零件在后续加工过程中易出现的变形开裂问题。

    一种大功率激光选区熔化3D打印高铁制动盘的方法

    公开(公告)号:CN109807329A

    公开(公告)日:2019-05-28

    申请号:CN201910238112.3

    申请日:2019-03-27

    Applicant: 东北大学

    Abstract: 一种大功率激光选区熔化3D打印高铁制动盘的方法,包括以下步骤:(1)制动盘模型导入3D打印软件中,设置制动盘模型倾斜;(2)通过软件在制动盘模型和基板模型之间添加支撑模型,支撑模型分为圆柱形支撑模型、方块形支撑模型和薄壁形支撑模型;(3)设定圆柱形支撑、上薄壁、下薄壁、外薄壁、内薄壁、第一中薄壁和第二中薄壁的尺寸;(4)对制动盘模型和全部支撑模型进行切片;(5)型导到快速成型制造系统,进行激光选区熔化成形,(6)实体取出后退火处理,切割并打磨。本发明的方法解决了制动盘悬空结构的成形以及成形过程中零件变形开裂的问题,显著提高了零件成形效率,解决了高铁制动盘零件在后续加工过程中易出现的变形开裂问题。

    激光增材24CrNiMoRE合金钢粉末及制备方法

    公开(公告)号:CN106399863B

    公开(公告)日:2018-06-22

    申请号:CN201611097614.1

    申请日:2016-12-03

    Applicant: 东北大学

    Abstract: 一种激光增材24CrNiMoRE合金钢粉末及制备方法,合金钢粉末化学成分按质量百分比:C:0.23~0.27%,Cr:0.90~1.15%,Ni:0.90~1.15%,Mo:0.45~0.60%,Mn:0.90~1.15%,Si:0.30~0.45%,Y:1~2%,余量为Fe;合金钢粉末形貌为球形,粒径为1~180μm,松装密度4.74~4.97g/cm3,空心球率小于2%;粒径1~50μm的24CrNiMoRE合金钢粉末流动性为15.6~18.7s/50g,粒径50~180μm的24CrNiMoRE合金钢粉末的流动性为14.3~15.1s/50g;制备方法:利用真空坩埚感应熔炼气雾化方法,通过调控气雾化工艺参数,制备出具有球形、流动性良好、粒径范围可控、空心球率低、组织强韧性化的粉末,应用于高铁刹车盘摩擦零件的激光增材制造。

Patent Agency Ranking