-
公开(公告)号:CN105592405B
公开(公告)日:2018-10-23
申请号:CN201510734202.3
申请日:2015-10-30
Applicant: 东北大学
Abstract: 基于派系过滤和标签传播的移动通信用户群组构造方法,属于数据业务领域。计算用户节点间的联系紧密度;构建用户节点间的有权复杂网络;基于有权复杂网络,采用派系过滤算法构造社交关系群组的种子群组;基于种子群组,初始化网络中所有节点标签,即为每个节点分配初始标签;利用改进的SLPA算法进行标签传播,当绝大多数节点的标签收敛时,基于节点的标签将节点划分至对应的群组,完成社交关系群组的构造,即拥有相同标签的节点构成一个群组;本发明的优点为:可获得较好的用户好友推荐效果;获得较好的协同推荐效果;有助于用户构成分析;有助于发现异常群体;下一代通信的划分基础。
-
公开(公告)号:CN105469144B
公开(公告)日:2017-12-01
申请号:CN201510809789.X
申请日:2015-11-19
Applicant: 东北大学
Abstract: 一种基于粒子分类与BP神经网络的移动通信用户流失预测方法,包括采集移动用户的通信记录数据;数据预处理,得到所需的样本数据集;建立BP神经网络结构;基于改进的粒子群优化算法PSO初始化所述BP神经网络的权值矩阵和阈值矩阵;对具有最好适应度的粒子对应的BP神经网络进行训练,得到移动通信用户流失模型;利用移动通信用户流失模型进行移动通信用户流失预测。本发明结合应用粒子分类优化算法(PCO)和适应度计算(PFC)两个过程对BP神经网络的权值矩阵和阈值矩阵进行初始化,使BP神经网络的权值矩阵和阈值矩阵更接近全局最优,从而提高BP神经网络对移动用户流失预测的准确率。
-
公开(公告)号:CN105469144A
公开(公告)日:2016-04-06
申请号:CN201510809789.X
申请日:2015-11-19
Applicant: 东北大学
Abstract: 一种基于粒子分类与BP神经网络的移动通信用户流失预测方法,包括采集移动用户的通信记录数据;数据预处理,得到所需的样本数据集;建立BP神经网络结构;基于改进的粒子群优化算法PSO初始化所述BP神经网络的权值矩阵和阈值矩阵;对具有最好适应度的粒子对应的BP神经网络进行训练,得到移动通信用户流失模型;利用移动通信用户流失模型进行移动通信用户流失预测。本发明结合应用粒子分类优化算法(PCO)和适应度计算(PFC)两个过程对BP神经网络的权值矩阵和阈值矩阵进行初始化,使BP神经网络的权值矩阵和阈值矩阵更接近全局最优,从而提高BP神经网络对移动用户流失预测的准确率。
-
公开(公告)号:CN105592405A
公开(公告)日:2016-05-18
申请号:CN201510734202.3
申请日:2015-10-30
Applicant: 东北大学
Abstract: 基于派系过滤和标签传播的移动通信用户群组构造方法,属于数据业务领域。计算用户节点间的联系紧密度;构建用户节点间的有权复杂网络;基于有权复杂网络,采用派系过滤算法构造社交关系群组的种子群组;基于种子群组,初始化网络中所有节点标签,即为每个节点分配初始标签;利用改进的SLPA算法进行标签传播,当绝大多数节点的标签收敛时,基于节点的标签将节点划分至对应的群组,完成社交关系群组的构造,即拥有相同标签的节点构成一个群组;本发明的有点为:可获得较好的用户好友推荐效果;获得较好的协同推荐效果;有助于用户构成分析;有助于发现异常群体;下一代通信的划分基础。
-
-
-