-
公开(公告)号:CN104294131B
公开(公告)日:2016-08-24
申请号:CN201410522382.4
申请日:2014-09-30
Applicant: 东北大学
Abstract: 本发明公开了一种可时效硬化的Mg?Zn?Cr?Bi?Zr合金及其制备方法,所述合金组分的质量百分数为:Zn 4%~10%,Cr 0.1%~0.5%,Bi 0.1%~1.0%,Zr 0.3%~0.5%,余量为Mg;制备所述合金的方法包括:将配好的合金炉料进行预热,并通入CO2/SF6的混合气体作为保护气进行熔炼,将得到的Mg?Zn?Cr?Bi?Zr铸态合金材料在380℃下扩散退火48h,再线切割得时效热处理用试样和板状拉伸试样,对上述试样固溶,再在160℃下时效0~400小时,即得。本发明能制备出铸态组织相对较细、具有较好时效硬化效果、热稳定性和力学性能,并且成本低的Mg?Zn?Cr?Bi?Zr铸造镁合金。
-
公开(公告)号:CN102766791A
公开(公告)日:2012-11-07
申请号:CN201210239762.8
申请日:2012-07-12
Applicant: 东北大学秦皇岛分校
Abstract: 本发明公开了一种具有超细凝固组织的准晶增强Mg-6Zn-3Y合金及其制备方法。其化学成分以质量百分数wt%计为:Mg87.0~93.0%、Zn3.0~10.0%、Y0.5~3.0%,通过常压下铸态Mg-Zn-Y合金材料,在GPa级超高压下控制凝固压力、温度及凝固冷却速率制备含有纳米级粒状准晶的具有超细凝固组织的Mg-6Zn-3Y合金;其铸态组织特征是在超细的α-Mg基体上均匀弥散分布着粒状准晶,其中α-Mg枝晶的二次枝晶间距为7-10um,粒状准晶直径为50-100nm,粒状准晶的体积约占该合金总体积的25~35%,本发明采用六面顶高压机,控制凝固工艺参数,即凝固压力为6GPa、凝固温度为1300℃、凝固速率为300K/S。本发明的超细晶的准晶增强Mg-6Zn-3Y合金具有较高的力学性能和较好的热稳定性。
-
公开(公告)号:CN104233030B
公开(公告)日:2016-08-24
申请号:CN201410525906.5
申请日:2014-09-30
Applicant: 东北大学
Abstract: 本发明公开了一种可时效硬化的Mg?Zn?Al?Cr?Bi?Ca合金及其制备方法,所述合金组分的质量百分数为:Zn 4%~10%,Al 2%~4%,Cr 0.1%~0.5%,Bi 0.1%~1.0%,Ca 0.5%~2.0%,余量为Mg,总质量100%;制备所述合金的方法包括:将配好的合金炉料进行预热,并通入CO2/SF6的混合气体作为保护气进行熔炼,将得到的Mg?Zn?Al?Cr?Bi?Ca铸态合金材料在380℃下扩散退火48h,再线切割得时效热处理用试样和板状拉伸试样,对上述试样进行保温,水淬,然后人工时效,得Mg?Zn?Al?Cr?Bi?Ca时效硬化镁合金。本发明能获得铸态组织相对较细、高热稳定性和力学性能的具有时效硬化效应的铸造Mg?Zn?Al?Cr?Bi?Ca镁合金。
-
公开(公告)号:CN105256262A
公开(公告)日:2016-01-20
申请号:CN201510726256.5
申请日:2015-10-29
Applicant: 东北大学
IPC: C22F1/06
Abstract: 本发明公开了一种通过预置孪晶提高Mg-Zn-Y合金时效硬化效应的方法,包括以下步骤:(1)合金固溶处理;(2)预变形—预置孪晶;(3)时效硬化。本发明提供的通过预置孪晶提高Mg-Zn-Y合金时效硬化效应的方法,能够有效提升合金时效硬化效应,增加Mg-Zn-Y合金时效峰值硬度。对固溶处理后的合金进行预变形,预置交叉条状-双孪晶后再进行时效处理,时效过程中孪晶界能作为沉淀相析出有效衬底;预变形量越大,双孪晶数量越多、孪晶宽度越窄,粒状析出相密度越大;基体内棒状沉淀相析出密度随变形量增大而增高、析出相尺寸随变形量增大而减小,因此预变形提高了Mg-Zn-Y合金沉淀硬化效应。
-
公开(公告)号:CN104294131A
公开(公告)日:2015-01-21
申请号:CN201410522382.4
申请日:2014-09-30
Applicant: 东北大学
Abstract: 本发明公开了一种可时效硬化的Mg-Zn-Cr-Bi-Zr合金及其制备方法,所述合金组分的质量百分数为:Zn 4%~10%,Cr 0.1%~0.5%,Bi 0.1%~1.0%,Zr 0.3%~0.5%,余量为Mg;制备所述合金的方法包括:将配好的合金炉料进行预热,并通入CO2/SF6的混合气体作为保护气进行熔炼,将得到的Mg-Zn-Cr-Bi-Zr铸态合金材料在380℃下扩散退火48h,再线切割得时效热处理用试样和板状拉伸试样,对上述试样固溶,再在160℃下时效0~400小时,即得。本发明能制备出铸态组织相对较细、具有较好时效硬化效果、热稳定性和力学性能,并且成本低的Mg-Zn-Cr-Bi-Zr铸造镁合金。
-
公开(公告)号:CN109280829B
公开(公告)日:2020-12-18
申请号:CN201811528700.2
申请日:2018-12-14
Applicant: 东北大学秦皇岛分校
Abstract: 本发明属于金属材料工程技术领域,提供了一种高强度铸造Mg‑Zn‑Cu‑Zr合金及其制备方法。其各组分的质量百分数为:Zn 4%~10%,Cu 0.1%~1.0%,Zr 0.1%~0.5%,余量为Mg。其中低成本元素Zr的添加不仅可以细化晶粒,还能降低其他杂质元素对合金组织和性能的损害。通过对常规铸造Mg‑Zn‑Cu‑Zr合金在GPa级高压下进行凝固,细化了合金凝固组织,改善了Mg(Zn,Cu)2相的形态与分布,进一步扩大Mg‑Zn‑Cu‑Zr合金的力学性能和高温使用范围。
-
公开(公告)号:CN109355540B
公开(公告)日:2020-10-16
申请号:CN201811529184.5
申请日:2018-12-14
Applicant: 东北大学
Abstract: 本发明属于金属材料工程技术领域,提出了一种高强度Mg‑Zn‑Cu‑Zr‑Cr‑Ca合金及其制备方法,采用固溶强化、细晶强化及第二相强化等手段制备出一种新型低成本、高强度Mg‑Zn‑Cu‑Zr‑Cr‑Ca合金。(1)在传统铸造Mg‑Zn‑Cu合金中加入Zr元素可以细化铸造合金晶粒,降低其他杂质元素对合金组织和性能的损害;(2)利用高压凝固技术进一步细化铸造Mg‑Zn‑Cu‑Zr合金凝固组织,改善Mg(Zn,Cu)2共晶相的形态与分布;(3)加入Cr元素增加时效初期强化相形核数量,提高时效硬化速率;(3)加入Ca元素增加合金的抗蠕变性能,提高熔炼时的抗氧化性,更重要的是Ca在时效过程中能形成盘状Ca2Mg6Zn3强化相,与Mg‑Zn系合金的主要强化相MgZn2共同作用达到两相复合强化的效果。
-
公开(公告)号:CN109280830A
公开(公告)日:2019-01-29
申请号:CN201811529182.6
申请日:2018-12-14
Applicant: 东北大学
Abstract: 本发明提出了GPa级高压作用下的Mg-Zn-Cu-Zr-(Cr-Ca)合金及制备方法,采用六面顶液压机对Mg-Zn-Cu-Zr-(Cr,Ca)合金在2GPa~6GPa高压作用下进行凝固,利用EBSD、SEM等分析手段研究了其凝固组织特征、Zn、Cu和Ca等溶质元素分布规律、高压凝固过程中的异质晶核以及强韧化机制。结果表明,该高压凝固合金的初生晶α-Mg为规整的等轴晶,平均晶粒尺寸由常压下的186μm逐渐细化到6GPa下的22μm;Zn在α-Mg基体中的固溶度由常压下的3.63%逐渐增至6GPa下的6.23%,晶间第二相由常压下的网状逐渐变为6GPa下断续分布的岛状或颗粒状;MgZn2、Mg2Ca和Cr2Zr相均为高压凝固过程中α-Mg晶体强有效的异质晶核衬底,极大地增加了凝固过程中晶核数目。合金的强度随凝固压力增大而升高,压断时最大抗力由常压下的240MPa提升至6GPa下的520MPa。
-
公开(公告)号:CN105256262B
公开(公告)日:2017-08-11
申请号:CN201510726256.5
申请日:2015-10-29
Applicant: 东北大学
IPC: C22F1/06
Abstract: 本发明公开了一种通过预置孪晶提高Mg‑Zn‑Y合金时效硬化效应的方法,包括以下步骤:(1)合金固溶处理;(2)预变形—预置孪晶;(3)时效硬化。本发明提供的通过预置孪晶提高Mg‑Zn‑Y合金时效硬化效应的方法,能够有效提升合金时效硬化效应,增加Mg‑Zn‑Y合金时效峰值硬度。对固溶处理后的合金进行预变形,预置交叉条状‑双孪晶后再进行时效处理,时效过程中孪晶界能作为沉淀相析出有效衬底;预变形量越大,双孪晶数量越多、孪晶宽度越窄,粒状析出相密度越大;基体内棒状沉淀相析出密度随变形量增大而增高、析出相尺寸随变形量增大而减小,因此预变形提高了Mg‑Zn‑Y合金沉淀硬化效应。
-
公开(公告)号:CN109280830B
公开(公告)日:2019-08-27
申请号:CN201811529182.6
申请日:2018-12-14
Applicant: 东北大学
Abstract: 本发明提出了GPa级高压作用下的Mg‑Zn‑Cu‑Zr‑(Cr‑Ca)合金及制备方法,采用六面顶液压机对Mg‑Zn‑Cu‑Zr‑(Cr,Ca)合金在2GPa~6GPa高压作用下进行凝固,利用EBSD、SEM等分析手段研究了其凝固组织特征、Zn、Cu和Ca等溶质元素分布规律、高压凝固过程中的异质晶核以及强韧化机制。结果表明,该高压凝固合金的初生晶α‑Mg为规整的等轴晶,平均晶粒尺寸由常压下的186μm逐渐细化到6GPa下的22μm;Zn在α‑Mg基体中的固溶度由常压下的3.63%逐渐增至6GPa下的6.23%,晶间第二相由常压下的网状逐渐变为6GPa下断续分布的岛状或颗粒状;MgZn2、Mg2Ca和Cr2Zr相均为高压凝固过程中α‑Mg晶体强有效的异质晶核衬底,极大地增加了凝固过程中晶核数目。合金的强度随凝固压力增大而升高,压断时最大抗力由常压下的240MPa提升至6GPa下的520MPa。
-
-
-
-
-
-
-
-
-