一种基于全局距离矩阵的卷积融合滚动轴承故障诊断方法

    公开(公告)号:CN119004353B

    公开(公告)日:2024-12-27

    申请号:CN202411488504.2

    申请日:2024-10-24

    Abstract: 发明提供一种基于全局距离矩阵的卷积融合滚动轴承故障诊断方法,包括以下步骤:获取待分析的滚动轴承的振动数据;基于全局距离矩阵的图像编码方法,将滚动轴承的振动数据转换成待分析滚动轴承二维图像;构建用于对滚动轴承故障进行分析的自适应融合多尺度卷积神经网络的故障诊断模型;对自适应融合多尺度卷积神经网络的故障诊断模型进行训练,得到训练好的自适应融合多尺度卷积神经网络的故障诊断模型;将待分析滚动轴承二维图片输入到训练好的自适应融合多尺度卷积神经网络的故障诊断模型,实现滚动轴承故障的诊断,该方法能够为不同来源的数据分配可学习的权重,赋予了网络分辨和合理利用不同信息源数据中的不平衡诊断信息的能力。

    一种基于全局距离矩阵的卷积融合滚动轴承故障诊断方法

    公开(公告)号:CN119004353A

    公开(公告)日:2024-11-22

    申请号:CN202411488504.2

    申请日:2024-10-24

    Abstract: 发明提供一种基于全局距离矩阵的卷积融合滚动轴承故障诊断方法,包括以下步骤:获取待分析的滚动轴承的振动数据;基于全局距离矩阵的图像编码方法,将滚动轴承的振动数据转换成待分析滚动轴承二维图像;构建用于对滚动轴承故障进行分析的自适应融合多尺度卷积神经网络的故障诊断模型;对自适应融合多尺度卷积神经网络的故障诊断模型进行训练,得到训练好的自适应融合多尺度卷积神经网络的故障诊断模型;将待分析滚动轴承二维图片输入到训练好的自适应融合多尺度卷积神经网络的故障诊断模型,实现滚动轴承故障的诊断,该方法能够为不同来源的数据分配可学习的权重,赋予了网络分辨和合理利用不同信息源数据中的不平衡诊断信息的能力。

    一种基于扩散模型的叶轮数据不平衡故障诊断方法

    公开(公告)号:CN119004171A

    公开(公告)日:2024-11-22

    申请号:CN202411035128.1

    申请日:2024-07-31

    Applicant: 东北大学

    Abstract: 本发明一种基于扩散模型的叶轮数据不平衡故障诊断方法,包括以下步骤:获取叶轮故障信号;采用非线性加噪方法和非自回归性网络DiffWave对扩散模型进行改进,得到叶轮故障信号增强模型,对叶轮故障信号增强模型进行训练,得到训练好的叶轮故障信号增强模型,实现故障叶轮的振动时域信号的增强;将增强后的故障叶轮的振动时域信号,划分为训练集数据和测试集数据;通过改进卷积神经网络结构来设计叶轮故障分类模型;基于训练集数据,对叶轮故障分类模型进行训练,得到训练好的叶轮故障分类模型;将测试集数据输入到训练好的叶轮故障分类模型中,得到叶轮故障分类,提升现有部分数据不平衡故障诊断方法的准确率。

Patent Agency Ranking