-
公开(公告)号:CN103116046A
公开(公告)日:2013-05-22
申请号:CN201210536993.5
申请日:2012-12-12
Applicant: 上海电气钠硫储能技术有限公司
IPC: G01R3/00
Abstract: 本发明公开了一种吸附混合熔盐碳毡电极的制备方法,以NaNO2和NaNO3的混合物作为溶质,以去离子水作为溶剂,制得混合熔盐溶液;将碳毡置于混合熔盐溶液中,并将混合熔盐溶液通过真空加压的方式导入碳毡内;将含混合熔盐溶液的碳毡置于电炉内,完全蒸发混合熔盐溶液中的水分后即得到吸附混合熔盐碳毡电极。本发明方法制备的吸附混合熔盐碳毡作为测量固体电解质离子电导率的电极材料,避免了金属钠作为测量电极在高温测量时带来的安全隐患和环境问题,而且,使用本发明方法制备的吸附混合熔盐碳毡电极,使得测量过程更准确、安全,且测量装置简便、可靠,对于准确检测固体电解质离子电导率具有重要意义。
-
公开(公告)号:CN103499204B
公开(公告)日:2015-08-05
申请号:CN201310485373.8
申请日:2013-10-17
Applicant: 上海电气钠硫储能技术有限公司
Abstract: 本发明公开了化学储能领域的一种钠硫电池电解质薄壁陶瓷管烧结工装;包括容器,所述容器的底部由容器底座封闭,所述容器底座的顶面上固定有支撑环,所述支撑环的环壁上开有至少一个气体交换通道;所述容器、所述容器底座和所述支撑环均由能够耐碱性气氛和1500℃以上高温的耐火材料制成;所述支撑环的顶面上设有同步收缩环,所述同步收缩环由固体电解质Na-β″-Al2O3的生坯制成;电解质薄壁陶瓷管的生坯倒置于所述同步收缩环的顶面上。其技术效果是:其能够有效降低电解质薄壁陶瓷管的生产成本,实现批量化生产,并能有效地提高电解质薄壁陶瓷管烧结良率和性能一致性,并能有效防止电解质薄壁陶瓷管的生坯在烧结过程中发生开裂、变形等缺陷。
-
公开(公告)号:CN103121834A
公开(公告)日:2013-05-29
申请号:CN201210537621.4
申请日:2012-12-12
Applicant: 上海电气钠硫储能技术有限公司
IPC: C04B35/10 , C04B35/622
Abstract: 本发明公开了储能领域的一种β”-氧化铝固体电解质陶瓷,该β”-氧化铝固体电解质陶瓷是烧结成型的,其由5~15wt.%的Na2O、0.4~2wt.%的Li2O和余量的Al2O3组成。其电阻率小于3.0Ω·cm。本发明还公开了储能领域的一种β”-氧化铝固体电解质陶瓷的制备方法,包括钠前驱粉体制备步骤、锂前驱粉体制备步骤、β”-氧化铝粉体制备步骤、β”-氧化铝粉体压片步骤和烧结步骤,通过在β”-氧化铝粉体制备步骤中,提高锂前驱粉体的用量,使β”-氧化铝粉体中,Li2O的含量为0.4~2.0wt.%。其技术效果是:有效降低烧结步骤中的烧结温度,使β”-氧化铝固体电解质陶瓷的电阻率小于3.0Ω·cm。
-
公开(公告)号:CN103121834B
公开(公告)日:2015-05-20
申请号:CN201210537621.4
申请日:2012-12-12
Applicant: 上海电气钠硫储能技术有限公司
IPC: C04B35/10 , C04B35/622
Abstract: 本发明公开了储能领域的一种β”-氧化铝固体电解质陶瓷,该β”-氧化铝固体电解质陶瓷是烧结成型的,其由5~15wt.%的Na2O、0.4~2wt.%的Li2O和余量的Al2O3组成。其电阻率小于3.0Ω·cm。本发明还公开了储能领域的一种β”-氧化铝固体电解质陶瓷的制备方法,包括钠前驱粉体制备步骤、锂前驱粉体制备步骤、β”-氧化铝粉体制备步骤、β”-氧化铝粉体压片步骤和烧结步骤,通过在β”-氧化铝粉体制备步骤中,提高锂前驱粉体的用量,使β”-氧化铝粉体中,Li2O的含量为0.4~2.0wt.%。其技术效果是:有效降低烧结步骤中的烧结温度,使β”-氧化铝固体电解质陶瓷的电阻率小于3.0Ω·cm。
-
公开(公告)号:CN103116046B
公开(公告)日:2015-03-25
申请号:CN201210536993.5
申请日:2012-12-12
Applicant: 上海电气钠硫储能技术有限公司
IPC: G01R3/00
Abstract: 本发明公开了一种吸附混合熔盐碳毡电极的制备方法,以NaNO2和NaNO3的混合物作为溶质,以去离子水作为溶剂,制得混合熔盐溶液;将碳毡置于混合熔盐溶液中,并将混合熔盐溶液通过真空加压的方式导入碳毡内;将含混合熔盐溶液的碳毡置于电炉内,完全蒸发混合熔盐溶液中的水分后即得到吸附混合熔盐碳毡电极。本发明方法制备的吸附混合熔盐碳毡作为测量固体电解质离子电导率的电极材料,避免了金属钠作为测量电极在高温测量时带来的安全隐患和环境问题,而且,使用本发明方法制备的吸附混合熔盐碳毡电极,使得测量过程更准确、安全,且测量装置简便、可靠,对于准确检测固体电解质离子电导率具有重要意义。
-
公开(公告)号:CN103499204A
公开(公告)日:2014-01-08
申请号:CN201310485373.8
申请日:2013-10-17
Applicant: 上海电气钠硫储能技术有限公司
Abstract: 本发明公开了化学储能领域的一种钠硫电池电解质薄壁陶瓷管烧结工装;包括容器,所述容器的底部由容器底座封闭,所述容器底座的顶面上固定有支撑环,所述支撑环的环壁上开有至少一个气体交换通道;所述容器、所述容器底座和所述支撑环均由能够耐碱性气氛和1500℃以上高温的耐火材料制成;所述支撑环的顶面上设有同步收缩环,所述同步收缩环由固体电解质Na-β″-Al2O3的生坯制成;电解质薄壁陶瓷管的生坯倒置于所述同步收缩环的顶面上。其技术效果是:其能够有效降低电解质薄壁陶瓷管的生产成本,实现批量化生产,并能有效地提高电解质薄壁陶瓷管烧结良率和性能一致性,并能有效防止电解质薄壁陶瓷管的生坯在烧结过程中发生开裂、变形等缺陷。
-
公开(公告)号:CN203489649U
公开(公告)日:2014-03-19
申请号:CN201320639493.4
申请日:2013-10-17
Applicant: 上海电气钠硫储能技术有限公司
Abstract: 本实用新型公开了化学储能领域的一种钠硫电池电解质薄壁陶瓷管烧结工装;包括容器,所述容器的底部由容器底座封闭,所述容器底座的顶面上固定有支撑环,所述支撑环的环壁上开有至少一个气体交换通道;所述容器、所述容器底座和所述支撑环均由能够耐碱性气氛和1500℃以上高温的耐火材料制成;所述支撑环的顶面上设有同步收缩环,所述同步收缩环由固体电解质Na-β″-Al2O3的生坯制成;电解质薄壁陶瓷管的生坯倒置于所述同步收缩环的顶面上。其技术效果是:其能够有效降低电解质薄壁陶瓷管的生产成本,实现批量化生产,并能有效地提高电解质薄壁陶瓷管烧结良率和性能一致性,并能有效防止电解质薄壁陶瓷管的生坯在烧结过程中发生开裂、变形等缺陷。
-
公开(公告)号:CN203011879U
公开(公告)日:2013-06-19
申请号:CN201220687026.4
申请日:2012-12-12
Applicant: 上海电气钠硫储能技术有限公司
Abstract: 本实用新型公开了一种用于固体电解质离子电导率的测量装置,包括高温电炉、设于该高温电炉一侧的热电偶、待测固体电解质、夹具、熔盐电极、铂金片和银导线,所述铂金片、熔盐电极、待测固体电解质、熔盐电极和铂金片从上至下依次层叠设置,且装夹于所述夹具上;所述夹具设于所述高温电炉内;所述铂金片分别引出一根银导线,且所述银导线的另一端均置于所述高温电炉外。本实用新型测量装置采用熔盐电极作为测量固体电解质离子电导率的电极,避免了金属钠作为测量电极在高温测量时带来的安全隐患和环境问题,而且本实用新型测量装置结构简单、安装方便,离子电导率的测量过程更准确、安全,对于准确检测固体电解质离子电导率具有重要意义。
-
-
-
-
-
-
-