氮化硅波导及其制备方法和半导体器件

    公开(公告)号:CN118033818A

    公开(公告)日:2024-05-14

    申请号:CN202211425455.9

    申请日:2022-11-14

    Abstract: 本发明提供一种氮化硅波导及其制备方法和半导体器件,氮化硅波导的制备方法包括:提供晶圆,晶圆包括相对的第一面及第二面,于晶圆的第一面形成隔离介质层;于隔离介质层及晶圆的第二面分别形成第一氮化硅层及第二氮化硅层;刻蚀第一氮化硅层,形成氮化硅波导,并进行退火处理;刻蚀第二氮化硅层,形成应力氮化硅波导,应力氮化硅波导与氮化硅波导位置相对,且形状大小尺寸完全相同,应力氮化硅波导用于使氮化硅波导达到应力平衡;于应力氮化硅波导间隙形成氧化硅层。本发明的制备方法通过在晶圆的第二面形成与晶圆第一面的氮化硅波导完全相同的应力氮化硅波导,来平衡氮化硅波导退火后的应力。

    台阶金属结构及硅光子器件结构的制备方法

    公开(公告)号:CN116169023A

    公开(公告)日:2023-05-26

    申请号:CN202111404497.X

    申请日:2021-11-24

    Abstract: 本发明提供一种台阶金属结构及硅光子器件的制备方法,包括:1)在基底上形成台阶结构;2)于台阶结构上沉积隔离介质层;3)沉积金属层,顶面金属的厚度大于侧壁金属的厚度;4)于金属层上形成图形阻挡层;5)干法刻蚀显露的顶面金属的第二部分,使顶面金属的第二部分与侧壁金属的第二部分的厚度概呈相等;6)采用各项同性刻蚀工艺去除显露的顶面金属的第二部分和侧壁金属的第二部分。本发明采用金属干法刻蚀和各向同性刻蚀工艺技术组合,通过进一步调整金属干法刻蚀和各向同性刻蚀的刻蚀厚度比例,可以使台阶结构顶面的断面位置的金属层横向腐蚀更小,金属层的横向腐蚀尺寸更可控。

    双层隔离层的SOI衬底
    3.
    发明授权

    公开(公告)号:CN111290077B

    公开(公告)日:2023-01-24

    申请号:CN201811484632.4

    申请日:2018-12-06

    Abstract: 本发明提供一种双层隔离层的SOI衬底,所述SOI衬底包括:衬底硅层;第一隔离层,位于所述衬底硅层之上,所述第一隔离层具有第一折射率;第二隔离层,位于所述第一隔离层之上,所述第二隔离层具有第二折射率;以及顶层硅层,位于所述第二隔离层之上;其中,所述第一折射率小于所述第二折射率。本发明的SOI衬底可用于制作硅光子器件,如在所有硅光子器件中都需要使用波导与光纤相互耦合的模斑转换器,可以使得模斑转换器具有低耦合损耗、大波长带宽、偏振不敏感、耦合容差大、便于与光纤封装等优点,在光通信领域具有广泛的应用前景。

    一种片上波导损耗测量方法、测量装置及其制造方法

    公开(公告)号:CN112444372A

    公开(公告)日:2021-03-05

    申请号:CN201910797728.4

    申请日:2019-08-27

    Abstract: 本申请提供一种片上波导损耗测量方法、测量装置及其制造方法。该片上波导损耗测量装置包括:形成于绝缘体上的硅(SOI)衬底的顶层硅中的光耦合器;形成于所述顶层硅中的沿直线方向延伸的直线型波导,所述直线型波导的光入射端与所述光耦合器的光出射端在横向上对置;形成于所述顶层硅中的环形谐振腔,所述环形谐振腔与所述直线型波导之间的最小距离为第一距离;位于所述直线型波导的靠近所述光耦合器一侧的偏振调节元件,所述偏振调节元件调节所述直线型波导中的光的偏振态;光电探测器,其形成于所述顶层硅上,探测所述直线型波导的光输出端所输出的光并生成电流;以及加热器,其形成于所述环形谐振腔的预定距离处。

    基于晶圆键合技术的Ⅲ-Ⅴ/Si异质结构及集成方法

    公开(公告)号:CN112186050A

    公开(公告)日:2021-01-05

    申请号:CN201910599543.2

    申请日:2019-07-04

    Abstract: 本发明提供一种基于晶圆键合技术的Ⅲ‑Ⅴ/Si异质结构及集成方法,集成方法包括:1)于硅波导层上形成介质层,于介质层中形成Ⅲ‑Ⅴ族材料异质集成窗口;2)于集成窗口内及介质层上形成非晶材料层并抛光,非晶材料层为非晶硅层或者非晶Ⅲ‑Ⅴ族材料层;3)键合Ⅲ‑Ⅴ族材料衬底及非晶材料层,并减薄Ⅲ‑Ⅴ族材料衬底;4)采用退火工艺实现非晶材料层的固相外延,形成单晶材料层,单晶材料层为单晶硅层或单晶Ⅲ‑Ⅴ族材料层。本发明通过将具有单晶结构的Ⅲ‑Ⅴ族材料衬底与硅直接键合方式集成,可获得高质量的Ⅲ‑Ⅴ族材料。本发明可有效发挥硅材料与Ⅲ‑Ⅴ族材料优势,形成Ⅲ‑Ⅴ族材料/硅异质结结构,大大提升光电器件的性能。

    偏振分束器及其形成方法

    公开(公告)号:CN111830627A

    公开(公告)日:2020-10-27

    申请号:CN201910328570.6

    申请日:2019-04-23

    Abstract: 本发明涉及光学技术领域,尤其涉及一种偏振分束器及其形成方法。所述偏振分束器包括:衬底;位于所述衬底表面且均沿第一方向延伸的第一波导、狭缝波导和第二波导;所述第一波导、所述狭缝波导与所述第二波导在沿与所述第一方向垂直的第二方向上平行排列,且所述狭缝波导位于所述第一波导与所述第二波导之间;所述第一方向为光线的传播方向,所述第一方向与所述第二方向均为平行于所述衬底的方向;所述光线中的横磁偏振光能够自所述第一波导经所述狭缝波导耦合至所述第二波导。本发明实现了对光线中TM偏振模式与TE偏振模式的分离,在未来的偏振复用以及传感等方面有着诸多潜在的应用。

    一种锗铅合金材料的制备方法

    公开(公告)号:CN111785792A

    公开(公告)日:2020-10-16

    申请号:CN201910272710.2

    申请日:2019-04-04

    Abstract: 本发明提供了一种锗铅合金材料的制备方法。该方法包括:在衬底上沉积基底介质层;在基底介质层中形成开孔所述衬底从所述开孔露出的部分被作为生长种子窗口;在所述基底介质层表面以及从所述开孔露出的衬底表面沉积包含锗(Ge)元素和铅(Pb)元素的材料层;在所述材料层表面沉积阻挡介质层;以及对所述衬底进行退火,在所述材料层中形成所述四族半导体锗铅合金材料。根据本申请,能够在衬底表面形成质量较高的GePb合金,并且,该方法与CMOS工艺的兼容性较好,有利于GePb合金在硅基器件中的应用。

Patent Agency Ranking