一种基于多层卷积特征融合的图像协同显著性检测方法

    公开(公告)号:CN108961220B

    公开(公告)日:2022-07-12

    申请号:CN201810619671.4

    申请日:2018-06-14

    Applicant: 上海大学

    Abstract: 本发明公开了一种基于多层卷积特征融合的图像协同显著性检测方法。具体步骤为:(1)、对图像数据集进行处理,包括统一尺寸,以及按照顺序选择规则为每张图像选定协同图像组;(2)、构建协同显著性检测的深度学习网络,输入图像及其协同图像组经过多层卷积特征提取、协同特征提取、多尺度特征融合和多尺度显著性图融合,得到输入图像协同显著性图;(3)、将(1)中处理好的训练数据输入(2)中构建的深度学习网络进行训练,直到网络收敛得到一个训练好的网络模型;(4)、利用(3)中训练好的网络模型对测试数据集进行实验,一张输入图像与它的多组协同图像组可以得到多张协同显著性图,将它们相加平均后,得到这张的输入图像最终的协同显著性图。

    一种基于多层卷积特征融合的图像协同显著性检测方法

    公开(公告)号:CN108961220A

    公开(公告)日:2018-12-07

    申请号:CN201810619671.4

    申请日:2018-06-14

    Applicant: 上海大学

    Abstract: 本发明公开了一种基于多层卷积特征融合的图像协同显著性检测方法。具体步骤为:(1)、对图像数据集进行处理,包括统一尺寸,以及按照顺序选择规则为每张图像选定协同图像组;(2)、构建协同显著性检测的深度学习网络,输入图像及其协同图像组经过多层卷积特征提取、协同特征提取、多尺度特征融合和多尺度显著性图融合,得到输入图像协同显著性图;(3)、将(1)中处理好的训练数据输入(2)中构建的深度学习网络进行训练,直到网络收敛得到一个训练好的网络模型;(4)、利用(3)中训练好的网络模型对测试数据集进行实验,一张输入图像与它的多组协同图像组可以得到多张协同显著性图,将它们相加平均后,得到这张的输入图像最终的协同显著性图。

    基于集成式预测与时空域传播的视频显著性检测方法

    公开(公告)号:CN107194948B

    公开(公告)日:2021-08-10

    申请号:CN201710250420.9

    申请日:2017-04-17

    Applicant: 上海大学

    Abstract: 本发明公开了一种基于集成式预测与时空域传播的视频显著性检测方法。(1)、对于视频的当前帧,构建以当前帧为中心的局部时域窗口;(2)、利用光流算法计算所需的光流场(运动矢量场);然后进行超像素分割;最后提取区域特征;(3)、利用当前帧的前两帧信息(包括对应的显著性图),获取集成式显著性预测模型,并对当前帧进行显著性预测;(4)、利用前两帧信息对当前帧进行前向时域传播;利用前两帧信息作用于当前帧的后两帧,获取对应的粗略时空显著性图,并基于此对当前帧进行后向时域传播;(5)、空域传播,得到对应于当前帧的时空显著性图。该方法于无约束视频的结果表明能够均匀点亮、凸显显著性运动物体,同时有效的抑制背景。

    基于集成式预测与时空域传播的视频显著性检测方法

    公开(公告)号:CN107194948A

    公开(公告)日:2017-09-22

    申请号:CN201710250420.9

    申请日:2017-04-17

    Applicant: 上海大学

    CPC classification number: G06T7/215 G06T7/251 G06T2207/10016

    Abstract: 本发明公开了一种基于集成式预测与时空域传播的视频显著性检测方法。(1)、对于视频的当前帧,构建以当前帧为中心的局部时域窗口;(2)、利用光流算法计算所需的光流场(运动矢量场);然后进行超像素分割;最后提取区域特征;(3)、利用当前帧的前两帧信息(包括对应的显著性图),获取集成式显著性预测模型,并对当前帧进行显著性预测;(4)、利用前两帧信息对当前帧进行前向时域传播;利用前两帧信息作用于当前帧的后两帧,获取对应的粗略时空显著性图,并基于此对当前帧进行后向时域传播;(5)、空域传播,得到对应于当前帧的时空显著性图。该方法于无约束视频的结果表明能够均匀点亮、凸显显著性运动物体,同时有效的抑制背景。

Patent Agency Ranking