-
公开(公告)号:CN110648317B
公开(公告)日:2023-06-30
申请号:CN201910881871.1
申请日:2019-09-18
Applicant: 上海交通大学
IPC: G06T7/00 , G06V10/764 , G06V10/82 , G06N3/0464 , G06N3/048 , G06N3/08 , G16H30/20
Abstract: 本发明提供了一种适用于脊柱转移肿瘤骨质的质量分类方法及系统,所述方法包括:从DICOM文件中获取病人的CT图像数据,根据阈值提取的方法裁剪出脊椎椎体的区域;将骨质质量分类任务建模为成骨分类子任务和溶骨分类子任务,并使用多层感知机将两个子任务的结果进行合并;对于每一张横截面的CT图像,使用多任务学习的方式,同时学习骨质质量分类任务和后外侧受损情况分类任务,并共享不同任务的特征图;使用自步学习的方式,让模型优先学习容易的样本,再逐渐学习较为困难的样本。本发明通过同时学习多个相关的任务并特征共享,以及使用从易到难的自步学习方法,实现了对脊柱转移肿瘤骨质质量的精确分类。
-
公开(公告)号:CN110648317A
公开(公告)日:2020-01-03
申请号:CN201910881871.1
申请日:2019-09-18
Applicant: 上海交通大学
Abstract: 本发明提供了一种适用于脊柱转移肿瘤骨质的质量分类方法及系统,所述方法包括:从DICOM文件中获取病人的CT图像数据,根据阈值提取的方法裁剪出脊椎椎体的区域;将骨质质量分类任务建模为成骨分类子任务和溶骨分类子任务,并使用多层感知机将两个子任务的结果进行合并;对于每一张横截面的CT图像,使用多任务学习的方式,同时学习骨质质量分类任务和后外侧受损情况分类任务,并共享不同任务的特征图;使用自步学习的方式,让模型优先学习容易的样本,再逐渐学习较为困难的样本。本发明通过同时学习多个相关的任务并特征共享,以及使用从易到难的自步学习方法,实现了对脊柱转移肿瘤骨质质量的精确分类。
-
公开(公告)号:CN106998502A
公开(公告)日:2017-08-01
申请号:CN201710124570.5
申请日:2017-03-03
Applicant: 上海交通大学
IPC: H04N21/466 , H04N21/258 , H04N21/25 , H04N21/45
CPC classification number: H04N21/4667 , H04N21/251 , H04N21/25891 , H04N21/4532
Abstract: 本发明提供了一种基于霍克斯过程的节目质量评价方法,该方法包括:将用户收视行为的原始数据抽象成点过程,只包含用户观看的时间点、节目编号、节目类型和频道编号;排除了用户收视意愿、用户偏好、频道偏好等主客观因素对节目质量评价的影响;排除了节目类型等客观因素对节目质量评价的影响;利用霍克斯模型对每个用户收视节目的行为建模。同时,本发明还使用最小窗梯度下降算法,通过对用户数据的计算,得到所建立模型的各项参数,从而实现对节目质量和节目类型的评价。
-
公开(公告)号:CN110866921A
公开(公告)日:2020-03-06
申请号:CN201910989817.9
申请日:2019-10-17
Applicant: 上海交通大学
IPC: G06T7/10
Abstract: 本发明提供了一种基于自训练和切片传播的弱监督脊椎椎体分割方法和系统,从病人的CT图像数据中获取每一张矢状面切片;以正中矢状面切片上每块脊骨的四个顶点作为标签,训练一个Mask RCNN分割网络;使用自训练的方法,并结合置信区域选择与条件随机场,来优化训练集标签;使用切片传播的方法,不断地扩充训练集,继续同一个分割网络,直至收敛。本发明能够仅通过一张矢状面的脊骨四个顶点标签,训练一个能对全部矢状面进行预测的分割模型,从而完成对脊椎椎体的三维分割。
-
-
-