-
公开(公告)号:CN119205614A
公开(公告)日:2024-12-27
申请号:CN202411065629.4
申请日:2024-08-05
Applicant: 三峡大学
IPC: G06T7/00 , G06T5/70 , G06T5/90 , G06T5/60 , G06T5/50 , G06N3/0464 , G06N3/045 , G06N3/048 , G06N3/09
Abstract: 基于YOLOv7‑ESC的铝型材缺陷检测识别方法,包括如下步骤:S1、获取公开的数据集,采用天池铝型材表面瑕疵识别数据集,进行数据预处理;S2、改进YOLOv7模型,主干网络ELAN模块中3*3Conv卷积替换为PCnov卷积;S3、构建残差金字塔池化结构,主干网络提取到的特征输入残差金字塔池化模块SPPCSPC‑F;S4、在主干网络和特征融合网络间加入CBAM注意力机制;S5、回归损失函数CIoU替换为WIoU损失函数,将特征融合后的特征传入检测头部分进行分类预测;S6、训练YOLO网络模型,保留最优权重;S7、利用训练好的最优权重进行测试,并对检测结果进行评价,最终实现铝型材表面缺陷的自动化和智能化识别。该方法能够提高铝型材表面缺陷检测精度,降低小目标缺陷漏检率。
-
公开(公告)号:CN117372339A
公开(公告)日:2024-01-09
申请号:CN202311225450.6
申请日:2023-09-21
Applicant: 三峡大学
IPC: G06T7/00 , G06V10/20 , G06V10/25 , G06V10/30 , G06V10/44 , G06V10/52 , G06V10/764 , G06V10/766 , G06V10/80 , G06V10/82
Abstract: 本发明提供一种基于YOLO‑SEE的PCB缺陷检测识别方法,包括如下步骤:S1、获取公开的数据集,进行数据预处理,建立YOLO‑SEE网络框架;S2、构建主干特征提取网络CSPDarknet53‑s,其由两部分构成,基本残差结构和线性残差结构;S3、构建特征融合网络FPN‑c,将主干网络提取到的特征传入特征融合网络FPN‑c中;S4、在主干网络和特征融合网络之间加入CA注意力模块;S5、将特征融合后的特征传入检测头部分进行分类预测;S6、训练YOLO‑SEE网络模型,得到最优权重;S7、利用训练好的最优权重进行测试,并对检测结果进行评价,最终实现PCB缺陷类别的自动化和智能化识别。该方法能够提高检测精度,降低漏检率,并且减少模型参数量。
-