一种深度聚类诈骗检测的方法和装置

    公开(公告)号:CN109600752A

    公开(公告)日:2019-04-09

    申请号:CN201811433091.2

    申请日:2018-11-28

    Abstract: 本申请公开了一种深度聚类的诈骗通话检测方法,包括:对所有话单数据进行深度聚类形成多个簇,将所述多个簇与诈骗簇的指标值进行比较,将与所述指标值匹配度最高的簇作为诈骗簇;获取所述诈骗簇中的主叫号码呼叫过的各被叫号码,根据话单数据确定呼叫过所述各被叫号码的所有主叫号码,利用所述各被叫号码和所述所有主叫号码进行复杂网络建模;在建模的复杂网络中,进行社区发现,并根据各社区包含所述诈骗簇中主叫号码的比例,确定诈骗高风险社区;对所述诈骗高风险社区中的各次通话进行语音识别,根据语音识别结果进行诈骗电话的判决和分类。应用本申请,能够在保证实时性的基础上能够更准确的发现诈骗通话。

    一种基于协同网络表示学习的电信异常检测方法

    公开(公告)号:CN109474756A

    公开(公告)日:2019-03-15

    申请号:CN201811367747.5

    申请日:2018-11-16

    CPC classification number: H04M3/2281 H04W12/12

    Abstract: 本发明公开了一种基于协同网络表示学习的电信异常检测方法,属于数据挖掘与机器学习领域。首先训练xgboost分类器,测试每条CDR数据的欺诈类别概率构成待检测的信令数据集。提取主被叫用户构成通联二部图P,根据评分从信令数据集中选取疑似欺诈的主叫节点生成种子节点集合Z,并将存在共同被叫邻居的任意两个主叫添加到协同网络集合G。通联二部图P扩展出待选的被叫节点集合B,并移除不满足条件的被叫用户,保留下来的被叫节点更新到集合B'中;扩展并更新种子节点集合Z',去重合并更新协同网络G',降维得到嵌入向量进行建模预测,取异常得分最大的N个作为检测结果输出。本发明保证了生成的协同网络的质量,提高计算速度,可以适应不同的数据特点。

    一种基于堆结构的防火墙规则集动态优化方法

    公开(公告)号:CN109150816A

    公开(公告)日:2019-01-04

    申请号:CN201710750090.X

    申请日:2017-08-28

    CPC classification number: H04L63/0263

    Abstract: 本发明公开了一种基于堆结构的防火墙规则集动态优化方法,其特征在于,具体包括:步骤SS1:构建堆结构的构造模型,所述堆结构的构造模型包括最小堆、单链表;步骤SS2:提出堆结构的动态调整算法,所述动态调整算法包括最小堆调整算法、堆结构调整算法。本发明所达到的有益效果:与现有的统计分析方法相比,本发明提出了一种基于堆结构的防火墙规则集动态优化算法,通过对网络数据包的相关特性进行分析,提出了优先级计算的三个公式,用于实现规则优先级的快速计算。同时根据三个计算公式,提出了一种高效的调整算法,使得防火墙规则集能实现高效可靠的改变,降低防火墙规则集的命中次数。

    一种多业务快速匹配分发的方法

    公开(公告)号:CN107342926A

    公开(公告)日:2017-11-10

    申请号:CN201710442603.0

    申请日:2017-06-13

    CPC classification number: H04L12/4645 H04L12/4654 H04L12/4675 H04L12/4679

    Abstract: 本发明公开了一种多业务快速匹配分发的方法。本方法为:1)在网络流量分析设备上配置各个业务规则;网络流量分析设备从接入流中提取五元组信息,根据五元组信息在规则表中查找该接入流中各业务匹配的业务规则,然后根据各业务匹配的业务规则计算一虚拟局域网标识VLAN ID;2)网络流量分析设备将该接入流中的每一业务报文携带上该虚拟局域网标识VLAN ID后转发到二级交换机上;3)二级交换机根据收到的业务报文中携带的虚拟局域网标识VLAN ID将该业务报文复制转发到一个或多个业务后端服务器;其中,二级交换机上每一虚拟局域网标识VLAN ID设置一对应的复制端口组合。本发明大大提高了系统整体的吞吐量。

    一种基于联邦学习模型的训练方法

    公开(公告)号:CN117035058A

    公开(公告)日:2023-11-10

    申请号:CN202310971765.9

    申请日:2023-08-03

    Abstract: 本发明属于联邦学习领域,提供了一种基于联邦学习模型的训练方法,包括以下步骤:S11,定义问题:确定需要解决的机器学习问题、本地数据的来源、以及参与联邦学习的设备或节点;S12,模型选择和初始化:选择相应的模型,并在所有的本地设备或节点上初始化相应的模型,并下发至所有用户端;S13,本地训练:每个本地设备或节点使用其本地数据集对初始化的模型进行训练,得到一个本地模型;S14,模型聚合:在中央服务器上聚合本地模型;本发明通过在每个本地设备或节点都可以进行本地模型的训练和更新,进一步分散计算负载,提高训练速度和效率;通过设定停止条件来控制模型更新的频率,进而避免过度拟合等问题。

Patent Agency Ranking