一种鲁棒视觉图像分类方法及系统

    公开(公告)号:CN105354595A

    公开(公告)日:2016-02-24

    申请号:CN201510728736.5

    申请日:2015-10-30

    Applicant: 苏州大学

    Abstract: 本发明公开了一种鲁棒视觉图像分类方法及系统,为了有效实现训练样本内无标签样本的类别预测和待测样本的快速归纳与合理降维,通过将基于弹性回归分析的误差度量集成到训练样本外的标签传播模型,并通过参数权衡归一化流形正则化项、基于软标签l2,1范数正则化的标签拟合项及基于l2,1范数正则化的弹性回归残差项对样本描述及类别鉴定的影响,完成标签传播模型的建立;进而通过对标签传播模型的迭代优化获取用于确定待测样本的类别的投影矩阵。因此,本申请中通过引入基于l2,1范数正则化的回归误差项及软标签l2,1范数正则化,能够在继承标签传播分类方法的优点的同时有效提高了系统的鲁棒性,使待测样本的归纳过程快速且精确。

    一种基于张量描述的人脸识别方法及装置

    公开(公告)号:CN104933428A

    公开(公告)日:2015-09-23

    申请号:CN201510437811.2

    申请日:2015-07-23

    Applicant: 苏州大学

    CPC classification number: G06K9/00288

    Abstract: 本发明公开了一种基于张量描述的人脸识别方法及装置,首先对有标签的图像样本和无标签的待分类样本进行相似性学习,构造相似近邻图和归一化的权重,用于表征样本相似性,再人工初始化一个类标签矩阵,为了有效实现样本外人脸图像的直接归纳,本发明将一个可直接归纳样本外图像的基于张量描述的正则化项集成到现有的标签传播模型,最后利用参数权衡相似性度量、初始类别标签和基于矩阵模式的正则化项对人脸识别的影响,完成系统建模,取系统输出中的相似性概率的最大值,用于人脸图像的类别鉴定,得到最准确的系统识别结果。通过引入张量描述的思想,在样本外人脸图像归纳过程中可有效保持图像像素间的拓扑结构,且系统可拓展性好。

    一种多分类器构建方法和系统

    公开(公告)号:CN104732241A

    公开(公告)日:2015-06-24

    申请号:CN201510163098.7

    申请日:2015-04-08

    Applicant: 苏州大学

    Abstract: 本发明的多分类器构建方法和系统,本发明将包含多类样本数据的训练样本集处理为多个两类数据集合;并对每个两类数据集合进行特征选择,得到相应的训练样本子集;之后对每个训练样本子集进行建模,得到相应的子分类器。可见,本发明通过把多类问题分解为多个两类问题,并对每个两类问题进行冗余特征剔除,使每个子分类器具备了特征挑选能力;从而后续进行类别诊断时,可预先基于各子分类器的特征挑选能力对待测数据进行特征挑选,通过利用各子分类器剔除待测数据中的冗余特征,为最终得到较高准确率的类别诊断结果提供了支持。

    一种人脸识别方法和装置

    公开(公告)号:CN104616000A

    公开(公告)日:2015-05-13

    申请号:CN201510089247.X

    申请日:2015-02-27

    Applicant: 苏州大学

    CPC classification number: G06K9/00288 G06K9/6271

    Abstract: 本发明提供一种人脸识别方法和装置。该方法在原有的小样本有监督拉普拉斯判别分析的基础上进行改进,在最小化类内散度的目标函数中融入了最大化类间散度,使用拉普拉斯判别分析,通过实现最优目标函数求得投影矩阵,对高维人脸数据进行降维。在用此种方法降维后,对人脸图像识别率比原SLDA方法高,能更好地进行人脸识别。

    一种地理位置相关的移动感知系统任务分配方法

    公开(公告)号:CN103731844B

    公开(公告)日:2015-05-13

    申请号:CN201410003015.3

    申请日:2014-01-03

    Applicant: 苏州大学

    Abstract: 本发明公开了一种地理位置相关的移动感知系统任务分配方法,移动感知系统包括一个任务平台与若干移动设备,任务分配方法包括以下步骤:S1、任务平台发布任务信息;S2、移动设备用户调阅任务信息;S3、感兴趣且满足任务要求的用户发送任务请求;S4、任务平台构建用户集合U,求解任务执行者集合W,然后向集合中的任务执行者发送任务确认;S5、收到确认的用户在约定时间执行任务,上传数据;S6、任务平台确认无误后支付报酬。本发明能够高效的完成地理位置相关的移动感知任务的分配过程,同时满足任务发布者对效益的期望。

    一种手写体识别方法及系统

    公开(公告)号:CN104484684A

    公开(公告)日:2015-04-01

    申请号:CN201510001954.9

    申请日:2015-01-05

    Applicant: 苏州大学

    CPC classification number: G06K9/66

    Abstract: 本申请公开了一种手写体识别方法及系统,方法为:利用带平滑范数L1的自编码器对训练样本集中的各个训练样本进行处理,得到对应的目标训练样本,所述目标训练样本与所述训练样本集中的样本标签组成目标训练样本集,所述带平滑范数L1的自编码器的目标函数中设有稀疏惩罚项,该稀疏惩罚项为平滑L1范数,然后利用目标训练样本训练分类器,得到目标分类器,利用带平滑范数L1的自编码器对待预测样本进行处理,得到目标待预测样本,最后将所述目标待预测样本输入至所述目标分类器,以确定待预测样本的类别。本申请的方案将平滑范数L1引入自编码器中,代替常用的KL散度,作为新的稀疏惩罚项,能够得到更具判别性的特征,使得最终的手写体识别率更高。

    一种人类基因启动子识别方法及装置

    公开(公告)号:CN104462870A

    公开(公告)日:2015-03-25

    申请号:CN201510011796.5

    申请日:2015-01-09

    Applicant: 苏州大学

    Abstract: 本发明提供了一种人类基因启动子识别方法及装置,现有技术中典型的非启动子具体包括外显子、内含子和3’-UTR,因此本申请预先分别构建预设启动子-外显子分类器、预设启动子-内含子分类器和预设启动子-3’-UTR分类器,相对于传统的启动子-非启动子的分类器,由于每个分类器中只有两个类别,不会出现交叉分类的情况,所以分类性能显著提高。并且分类器的基因训练序列中启动子与外显子的数量一致,启动子与内含子的数量一致,启动子与3’-UTR的数量一致,因此保证每个分类器中启动子和非启动子样本平衡,使得分类器能够依据平衡样本进行分类,因此能够准确识别启动子,解决现有技术中假阳性的问题,进而提高分类器的分类性能。

    启动子识别方法及系统
    88.
    发明公开

    公开(公告)号:CN104376234A

    公开(公告)日:2015-02-25

    申请号:CN201410727536.3

    申请日:2014-12-03

    Applicant: 苏州大学

    Abstract: 本发明公开了一种启动子识别方法及系统:获取测试数据确定所述测试数据的一次特征向量;利用自编码器,对所述测试数据的一次特征向量进行特征提取,得到所述测试数据的二次特征向量;利用预设支持向量机,对所述测试数据的二次特征向量进行分类,得到分类结果,当所述分类结果满足预设条件时,确定所述测试数据为启动子。相较现有技术中直接对利用KL散度提取到的特征向量进行分类判定,本发明利用了自编码器的神经网络学习算法,有效地提高了对启动子的识别性能,进而提高了识别准确度。

    一种手写体数字识别方法及系统

    公开(公告)号:CN103927550A

    公开(公告)日:2014-07-16

    申请号:CN201410161915.0

    申请日:2014-04-22

    Applicant: 苏州大学

    Abstract: 本申请提供一种手写体数字识别方法及系统,该方法通过接收用户输入的待测手写体数字样本;通过训练得到的第一分类器、第二分类器、第三分类器分别对待测手写体数字样本进行预测,并输出第一分类器、第二分类器、第三分类器对待测手写体数字样本的预测结果;比较第一分类器、第二分类器、第三分类器对待测手写体数字样本的预测结果,若至少2个分类器得出的是相同的预测结果,则判定待测手写体数字样本属于该预测结果的类别,否则,判定待测手写体数字样本属于第二分类器输出的预测结果的类别。该方法通过使用3个分类器对待测样本进行预测,在保证预测速度的基础上,很大程度上提高了手写体数字识别的识别率。

    一种最终分类器的获得方法及应用方法、系统

    公开(公告)号:CN103927530A

    公开(公告)日:2014-07-16

    申请号:CN201410186226.5

    申请日:2014-05-05

    Applicant: 苏州大学

    Abstract: 本发明公开了一种基于相似性学习的人脸集匹配方法及系统,通过从原始数据样本中选取训练集样本和测试集样本,并挑选训练样本,计算真实相似度,与计算出的计算相似度进行比较,从而选取最终分类器,并将训练样本中每类样本的几何平均值以及测试集样本中的每个测试样本带入最终分类器中,获取分类结果,进而获取测试样本的类别。本方案首先通过选取部分样本作为训练样本,进行训练过程,实现对分类器的选取,避免了将所有的样本作为训练样本进行训练,从而简化了训练过程,避免了复杂的过程,提高了训练速度。另外,本方案中通过选取训练集样本每类样本的几何平均值来构建多个不同的分类器,达到了通过简单的操作过程带来精确的结果的效果。

Patent Agency Ranking