-
公开(公告)号:CN103886310A
公开(公告)日:2014-06-25
申请号:CN201410163058.8
申请日:2014-04-22
Applicant: 苏州大学
Abstract: 本发明提供一种基于多个1类支持向量机的人脸相似性识别方法及系统。所述方法包括以下步骤。S1、对现有的人脸训练样本集进行处理,获得差样本对,并构造差样本对训练集。S2、对所述差样本对训练集按类别分别进行训练学习,获得1类SVM模型系数,并通过所述模型系数获得超球体半径rc。S3、获取任意两个测试样本的测试差样本对,并根据所述测试差样本对及超球体半径计算相似性判别模型,以判断所述任意两个测试样本的相似性。
-
公开(公告)号:CN103927530A
公开(公告)日:2014-07-16
申请号:CN201410186226.5
申请日:2014-05-05
Applicant: 苏州大学
Abstract: 本发明公开了一种基于相似性学习的人脸集匹配方法及系统,通过从原始数据样本中选取训练集样本和测试集样本,并挑选训练样本,计算真实相似度,与计算出的计算相似度进行比较,从而选取最终分类器,并将训练样本中每类样本的几何平均值以及测试集样本中的每个测试样本带入最终分类器中,获取分类结果,进而获取测试样本的类别。本方案首先通过选取部分样本作为训练样本,进行训练过程,实现对分类器的选取,避免了将所有的样本作为训练样本进行训练,从而简化了训练过程,避免了复杂的过程,提高了训练速度。另外,本方案中通过选取训练集样本每类样本的几何平均值来构建多个不同的分类器,达到了通过简单的操作过程带来精确的结果的效果。
-
公开(公告)号:CN103886310B
公开(公告)日:2017-09-19
申请号:CN201410163058.8
申请日:2014-04-22
Applicant: 苏州大学
Abstract: 本发明提供一种基于多个1类支持向量机的人脸相似性识别方法及系统。所述方法包括以下步骤。S1、对现有的人脸训练样本集进行处理,获得差样本对,并构造差样本对训练集。S2、对所述差样本对训练集按类别分别进行训练学习,获得1类SVM模型系数,并通过所述模型系数获得超球体半径rc。S3、获取任意两个测试样本的测试差样本对,并根据所述测试差样本对及超球体半径计算相似性判别模型,以判断所述任意两个测试样本的相似性。
-
公开(公告)号:CN106446931A
公开(公告)日:2017-02-22
申请号:CN201610767804.3
申请日:2016-08-30
Applicant: 苏州大学
IPC: G06K9/62
Abstract: 本发明公开了一种基于支持向量数据描述的特征提取及分类方法,包括分别计算每个样本到对应于各种数据类型的多个超球体模型的球心的欧式距离;其中多个超球体模型采用支持向量数据描述算法预先训练得到;将各个欧式距离与其对应的超球体模型的半径带入新特征关系式,得到每个样本对应的新特征样本;各个新特征样本的集合为新特征样本集;采用预设分类算法对新特征样本集进行分类处理,得到分类结果。本发明能够减小特征提取时的计算量,提高数据分类的速度。本发明还提供了一种采用上述方法的基于支持向量数据描述的特征提取及分类系统,具有上述优点,在此不再赘述。
-
公开(公告)号:CN103927560A
公开(公告)日:2014-07-16
申请号:CN201410177935.7
申请日:2014-04-29
Applicant: 苏州大学
IPC: G06K9/66
Abstract: 本申请提供一种特征选择方法及装置,该方法通过响应接收到的训练样本集,生成第一训练样本集、与该第一训练样本集对应的第一特征索引集、第二训练样本集以及与该第二训练样本集对应的第二特征索引集,根据第一训练样本集计算第一元素,进而完成对第一特征索引集的更新,根据第二训练样本集计算第二元素,进而完成对第二特征索引集的更新,当更新后的第一特征索引集/第二特征索引集中各个特征的数量和满足预设值时,根据得到第一特征索引集以及第二特征索引集计算特征索引集,完成对特征的选择,以实现在特征选择的过程中,在保证学习效率的基础上,降低计算代缴、提高推广能力。
-
公开(公告)号:CN103927530B
公开(公告)日:2017-06-16
申请号:CN201410186226.5
申请日:2014-05-05
Applicant: 苏州大学
Abstract: 本发明公开了一种基于相似性学习的人脸集匹配方法及系统,通过从原始数据样本中选取训练集样本和测试集样本,并挑选训练样本,计算真实相似度,与计算出的计算相似度进行比较,从而选取最终分类器,并将训练样本中每类样本的几何平均值以及测试集样本中的每个测试样本带入最终分类器中,获取分类结果,进而获取测试样本的类别。本方案首先通过选取部分样本作为训练样本,进行训练过程,实现对分类器的选取,避免了将所有的样本作为训练样本进行训练,从而简化了训练过程,避免了复杂的过程,提高了训练速度。另外,本方案中通过选取训练集样本每类样本的几何平均值来构建多个不同的分类器,达到了通过简单的操作过程带来精确的结果的效果。
-
公开(公告)号:CN103927560B
公开(公告)日:2017-03-29
申请号:CN201410177935.7
申请日:2014-04-29
Applicant: 苏州大学
IPC: G06K9/66
Abstract: 本申请提供一种特征选择方法及装置,该方法通过响应接收到的训练样本集,生成第一训练样本集、与该第一训练样本集对应的第一特征索引集、第二训练样本集以及与该第二训练样本集对应的第二特征索引集,根据第一训练样本集计算第一元素,进而完成对第一特征索引集的更新,根据第二训练样本集计算第二元素,进而完成对第二特征索引集的更新,当更新后的第一特征索引集/第二特征索引集中各个特征的数量和满足预设值时,根据得到第一特征索引集以及第二特征索引集计算特征索引集,完成对特征的选择,以实现在特征选择的过程中,在保证学习效率的基础上,降低计算代缴、提高推广能力。
-
公开(公告)号:CN103679160B
公开(公告)日:2017-03-22
申请号:CN201410003078.9
申请日:2014-01-03
Applicant: 苏州大学
Abstract: 本发明提供了一种人脸识别的方法,该方法基于一类支持向量机来学习人脸图像之间的相似性,包括:对人脸样本进行分类得到训练样本组和测试样本组;对训练样本组中的训练样本进行分类得到至少两个类别,在每个类别中获取训练样本生成差样本对,并构造训练样本对组;依据训练样本对组对一类支持向量机进行训练,得到其决策模型参数,并得到相似性判别模型;将测试样本组中任意获取两个测试样本生成的测试差样本对输入相似性判别模型中进行相似性判断。在该方法中,输入一类支持向量机的训练样本采用分类并依据同类训练样本中生成训练样本差的方式,使得输入一类支持向量机的数据量减少,降低了计算的复杂度。
-
公开(公告)号:CN104615789A
公开(公告)日:2015-05-13
申请号:CN201510101131.3
申请日:2015-03-06
Applicant: 苏州大学
CPC classification number: G06K9/6271
Abstract: 本申请提供了一种数据分类方法及装置,该方法在对初始属性进行约简时,使用的是基于最小化属性个数、条件属性对决策属性的依赖度和区别矩阵的遗传算法,具有该种特征的遗传算法相较于通过最小化属性个数和最大化区别矩阵个数进行约简的算法而言,考虑到了条件属性对决策属性的依赖度,避免不相关属性的存在,从而提高了分类准确度。
-
公开(公告)号:CN103679160A
公开(公告)日:2014-03-26
申请号:CN201410003078.9
申请日:2014-01-03
Applicant: 苏州大学
Abstract: 本发明提供了一种人脸识别的方法,该方法基于一类支持向量机来学习人脸图像之间的相似性,包括:对人脸样本进行分类得到训练样本组和测试样本组;对训练样本组中的训练样本进行分类得到至少两个类别,在每个类别中获取训练样本生成差样本对,并构造训练样本对组;依据训练样本对组对一类支持向量机进行训练,得到其决策模型参数,并得到相似性判别模型;将测试样本组中任意获取两个测试样本生成的测试差样本对输入相似性判别模型中进行相似性判断。在该方法中,输入一类支持向量机的训练样本采用分类并依据同类训练样本中生成训练样本差的方式,使得输入一类支持向量机的数据量减少,降低了计算的复杂度。
-
-
-
-
-
-
-
-
-