一种使用NiCl2制备耐高温介电性吸波剂C@SiC晶须粉末的制备方法

    公开(公告)号:CN110564366A

    公开(公告)日:2019-12-13

    申请号:CN201910940202.7

    申请日:2019-09-30

    Abstract: 本发明公开了一种使用NiCl2制备耐高温介电性吸波剂C@SiC晶须粉末的制备方法,属于耐高温电磁波吸收与防护复合材料技术领域。本发明解决了目前应用的磁性吸波材料在高温下都会有不同程度的不可逆氧化,且磁性材料密度远大于介电材料的问题。本发明方法:一、SiC晶须烘烧后用HF溶液浸泡;二、NiCl2水溶液,三、NiCl2水溶液与步骤一处理的SiC晶须混合,搅拌均匀,烘干,研磨均匀;四、惰性气体保护下烧结,去除杂质,烘干,研磨,得到C@SiC粉末。并且本发明还可以在步骤四研磨后记性二次烧结。本发明的C@SiC晶须粉末在常温下具有很好的抗氧化能力。

    偶联剂气相改性石墨纳米片复合粉体的制备方法

    公开(公告)号:CN110423494A

    公开(公告)日:2019-11-08

    申请号:CN201910545480.2

    申请日:2019-06-22

    Abstract: 本发明涉及一种石墨纳米粉体改性工艺,具体的说涉及一种硅烷类或钛酸酯类偶联剂化合物与石墨纳米片复合粉体的制备方法,其特征在于以硅烷类或钛酸酯类偶联剂化合物通过鼓泡式形成偶联剂气氛,在石墨纳米片制备过程中,高速高能量作用,促进偶联剂分子与石墨纳米片相互作用,在石墨纳米片表面附着硅烷类或钛酸酯类化合物,形成石墨纳米片的改性粉体。对照现有技术,本发明技术简单,石墨纳米片的表面附着偶联剂化合物改性的复合粉体,在用于涂料、油墨等多种不同产品时,增强了石墨纳米片粉体在其中的分散性。

    碳酸锰/四氧化三锰/石墨烯三元复合材料的制备方法及其应用

    公开(公告)号:CN107017400B

    公开(公告)日:2019-08-23

    申请号:CN201710408312.X

    申请日:2017-06-02

    Abstract: 碳酸锰/四氧化三锰/石墨烯三元复合材料的制备方法及其应用,本发明涉及一种锂离子电池负极材料的制备方法,它要解决现有锂离子电池负极用碳酸锰/石墨烯复合材料的制备周期长,电化学性能较低的问题。制备方法:一、将石墨放入H2SO4溶液中,再加入KMnO4,温度升高到85~98℃后加入去离子水和H2O2,得到Mn/氧化石墨溶液;二、超声处理;三、加入碳酸钠溶液,调节体系的pH至9~11;四、水浴加热,过滤收集沉淀,清洗、干燥后得到碳酸锰/四氧化三锰/石墨烯三元复合材料。发明将制备氧化石墨所用到的高锰酸钾中的锰作为后续复合材料的锰源,提高原料利用率,缩短制备时间,作为锂离子电池负极材料增强了循环性能和比容量。

    一种B4C纳米带的制备方法
    85.
    发明公开

    公开(公告)号:CN109179420A

    公开(公告)日:2019-01-11

    申请号:CN201811240955.9

    申请日:2018-10-24

    Abstract: 本发明提出一种B4C纳米带的制备方法,包括步骤1、混料:将聚氨硼烷和聚碳硅烷均匀分散到四氢呋喃中,得到混合物;步骤2、干燥:将步骤1所得的混合物进行烘干,烘干温度为50℃~60℃;步骤3、研磨:将干燥后的混合物研磨成前驱体粉末;步骤4、烧结与取料:将前驱体粉末在保护气体环境下进行烧结,烧结温度达到1400℃时,在保护气体环境下保持该温度0.5h~1.5h,通过气相沉积法制备B4C纳米带,之后当温度下降后,即可取出烧结产物,即B4C纳米带。通过上述制备方法制得的纳米带为具有均匀宽度和厚度的单晶B4C纳米带,上述制备方法能够在简化工艺流程、缩短制备时间的前提下,使B4C纳米带仍保持较高的纯度和转化率,使生产成本显著降低,具有较为广阔的应用前景。

    一种纳米孔结构硅硼碳氮多孔陶瓷制备方法

    公开(公告)号:CN103896589B

    公开(公告)日:2015-04-29

    申请号:CN201410079851.X

    申请日:2014-03-06

    Abstract: 本发明涉及一种纳米孔结构硅硼碳氮多孔陶瓷的制备方法,由三氯化硼、苯胺、二甲基硅油按比例1:1:2.5均匀混合,加热下反应制得有机先驱体。再将纳米聚丙烯腈纤维浸渍于有机先驱体中并在一定温度下保温。最后将这种混合物置于高纯氮气气氛下烧结,保温结束后随炉冷却至室温。经过高温氮化处理后,其中的聚丙烯腈纤维被刻蚀掉,形成纳米孔结构的硅硼碳氮(Si-B-C-N)多孔陶瓷。得到的硅硼碳氮(Si-B-C-N)多孔陶瓷径为150-300nm,孔隙率高达78~90%,耐高温,抗氧化,空气气氛下950oC没有明显氧化,1100oC时机械性能没有明显损失。可用于柴油尾气颗粒捕集器(DPF)载体。

    一种氧化锌纳米材料的制备方法

    公开(公告)号:CN103449505A

    公开(公告)日:2013-12-18

    申请号:CN201310380719.8

    申请日:2013-08-28

    Abstract: 本发明涉及一种氧化锌纳米材料的制备方法,其将锌粉均匀铺展于一可用于感应加热的石墨纸加热体表面;通过感应加热设备对加热体进行加热,加热体升温加热锌粉,在空气环境下,锌粉蒸发与空气中的氧反应,得到纯净氧化锌纳米材料。本发明制备方法工艺、设备简单,制备效率高,转化率高,无需复杂的分离程序。制备得到氧化锌纳米材料可广泛应用于短波激光器、二次电池电极、化学传感器、太阳能电池以及橡胶制品添加剂等。

    一种应用硼酸提高SiC纳米线产率的方法

    公开(公告)号:CN101597058B

    公开(公告)日:2011-01-26

    申请号:CN200910072347.6

    申请日:2009-06-22

    Abstract: 一种应用硼酸提高SiC纳米线产率的方法,它涉及了一种提高SiC纳米纤维产率的方法。本发明解决了现有SiC纳米线制备方法存在产率低的缺陷以及硼酸未被应用到SiC纳米线生产领域的问题。本发明应用硼酸提高SiC纳米线产率的方法按照如下步骤进行:一、将蔗糖与硅溶胶混合,再将硼酸加入到混合液中,干燥,得到干凝胶;二、将步骤一得到的干凝胶置入管式炉中,通入氮气,升温,保温,即得凝胶粉末;三、球磨3h,加入无水乙醇,气氛烧结炉,冷却至室温;即得到呈羊毛毡状的SiC纳米线毛层。本发明在纳米线生产中应用硼酸,应用硼酸后,SiC纳米线的产率提高了10倍以上,纤维长度达到5~6cm。

Patent Agency Ranking