一种高精度说话人确认方法

    公开(公告)号:CN103198833B

    公开(公告)日:2015-10-21

    申请号:CN201310075089.3

    申请日:2013-03-08

    Abstract: 本发明涉及一种基于文本无关说话人确认方法。本发明提出了Turbo-Boost分类算法与2D-Haar音频特征的相结合的说话人确认方法,首先使用基础音频特征构成音频特征图;进而利用音频特征图提取2D-Haar音频特征,再使用Turbo-Boost算法,通过两轮迭代运算分别完成对2D-Haar音频特征的筛选和说话人分类器的训练;最终使用训练好的说话人分类器实现说话人确认。与现有技术相比,本发明可以在同样的运算消耗下获得更高的准确率,特别适合对于运算速度和说话人确认精度有着严格要求的说话人确认场合,例如电话自动接听系统、计算机身份认证系统、高密级门禁系统等。

    基于CRF++汉语句义结构模型自动标注方法

    公开(公告)号:CN103176963B

    公开(公告)日:2015-06-03

    申请号:CN201310074933.0

    申请日:2013-03-08

    Abstract: 本发明涉及一种基于CRF++的汉语句义结构模型自动标注方法,属于计算机科学与自然语言处理语义分析技术领域。本发明首先使用BFS-CTC汉语标注语料库语料,训练得到谓词识别模型、词关系识别模型和语义格类型识别模型;进而使用上述三种识别模型,对原始句子进行识别,得到句子中谓词信息、词关系信息和语义格类型信息;最终根据谓词、词关系和语义格类型的搭配规则得到汉语句义结构模型。本发明为语义分析领域,提供了更多的更全面的语义特征,为使用计算机对句子进行句义结构模型分析奠定了基础。同时为BFS-CTC汉语标注语料库的自动标注,提供了一定的可能,语料数据无论是研究还是实际应用,都是极其重要的,将对BFS-CTC汉语标注语料库的扩充,起到极大的推动作用。

    2型糖尿病发病危险因素对血糖影响的定量分析方法

    公开(公告)号:CN103198211A

    公开(公告)日:2013-07-10

    申请号:CN201310074038.9

    申请日:2013-03-08

    Abstract: 本发明涉及2型糖尿病发病危险因素对血糖影响的定量分析方法,属于生物信息处理及医学领域。本发明首先使用C4.5和EM聚类算法实现重要发病危险因素的选择;再根据性别和年龄对全体人群进行划分,进而利用BP神经网络算法对细化人群进行敏感度计算,最终通过敏感度实现多因素对血糖影响的定量分析。与现有大量统计学方法相比,本发明采用数据挖掘方法,在充分考虑多因素之间相互影响的同时,在细化人群中实现多因素对血糖影响的定量分析,大大提高了定量分析的准确率,并可为个体发病的细化干预提供判定方法。本发明可对个体2型糖尿病发病进行干预指导,不仅可以预防或延缓发病,而且该方法可应用推广到其它疾病危险因素的定量分析。

    基于中心块的句义成分关系分层识别方法

    公开(公告)号:CN103177089A

    公开(公告)日:2013-06-26

    申请号:CN201310074970.1

    申请日:2013-03-08

    Abstract: 本发明涉及一种基于中心块的句义成分关系分层识别方法,属于计算机科学与中文信息处理技术领域。本发明基于现代汉语语义学,解决了汉语句义结构模型中汉语句义成分关系识别的问题。本发明首先给出一种“层次中心块”的概念,实现句法结构到句义结构的有效映射;将句义成分关系识别问题划分为三类层次关系识别问题,谓词间关系、基本格与谓词关系、一般格与各句义成分关系;分别提出了中心块识别算法、基本格识别算法、一般格识别算法、谓词间关系识别算法、基本格与谓词间关系识别算法、一般格与各句义成分间关系识别算法,使得计算机能够以较高的准确率及效率分析得到句义成分关系,进一步推进了汉语句义结构模型的研究。

    汉语语义格分层识别方法
    85.
    发明公开

    公开(公告)号:CN103150303A

    公开(公告)日:2013-06-12

    申请号:CN201310074015.8

    申请日:2013-03-08

    Abstract: 本发明涉及一种基于词法、句法和句义结构特征的汉语语义格分层识别方法,属于计算机科学与自然语言处理技术领域。本发明在增加了句义结构特征的基础上,首先获取最小完整语义单元;进而提取词法、句法和句义结构特征并使用C4.5决策树算法进行汉语语义格的初步识别;然后选择词法、句法和句义特征并使用C4.5决策树算法与最大熵算法相结合的方法实现汉语语义格中基本格的精确识别;最后再次选择词法、句法和句义特征并使用C4.5决策树算法实现汉语语义格中一般格的精确识别。与现有语言分析技术相比,本发明为语义学自动分析自然语言提供了汉语语义格的自动识别,是实现自动语义分析的基础。本发明可实现并行处理,能够提高计算机处理效率。

    基于SVM和GMM的特定音频事件分层泛化识别方法

    公开(公告)号:CN102799899A

    公开(公告)日:2012-11-28

    申请号:CN201210226349.8

    申请日:2012-06-29

    Abstract: 本发明涉及一种融合支持向量机(SVM)和高斯混合模型(GMM)的特定音频事件分层泛化识别方法,属于计算机与音频事件识别技术领域。本方法首先获得训练样本的音频特征向量文件,然后分别使用GMM方法和SVM方法对大量种类繁多的训练样本的音频特征向量文件进行模型训练,得到具有泛化能力的GMM模型和SVM分类器,完成离线训练。最后使用GMM模型和SVM分类器对待识别音频特征向量文件进行分层识别,经由一定的结果融合判决策略,得到每一个音频片段的类别标签属性。本方法解决了现有特定音频事件识别中对连续音频流识别效率低、持续时间特别短的音频事件漏检概率高等问题,可应用于特定音频检索和基于内容的网络音频监管。

    融合查询行为特征的分类模型窃取检测方法

    公开(公告)号:CN116257845B

    公开(公告)日:2025-04-18

    申请号:CN202310173239.8

    申请日:2023-02-16

    Abstract: 本发明涉及融合查询行为特征的分类模型窃取检测方法,属于计算机与信息科学领域。本发明首先从原始流量数据包中提取查询行为数据流,并基于查询行为数据流提取查询样本;然后对查询样本进行正态分布校验计算样本特征恶意值,同时利用CNN和LSTM提取查询行为数据流的时空特征,再判断查询行为类型并计算行为恶意值;最后结合样本特征恶意值和行为恶意值进行分类模型窃取检测。本发明针对攻击者生成的恶意查询样本与良性查询样本间的特征差异不明显的问题,提出了一种融合查询行为特征的分类模型窃取检测方法,提高了分类模型窃取检测召回率。

    多车型连续学习的列车运动状态估计方法

    公开(公告)号:CN115056829B

    公开(公告)日:2024-09-20

    申请号:CN202210533015.9

    申请日:2022-05-16

    Abstract: 本发明涉及多车型连续学习的列车运动状态估计方法,属于计算机与人工智能技术领域。首先通过特征抽取方法确定列车运行数据的基础特征集合,针对每一特征的样本关系构建单层图结构,根据特征关联关系组合单层图为多重图;其次,基于神经气体网络学习多重图的拓扑结构,并使用多车型运行数据对拓扑结构迭代更新;然后,对多重图的层内与层间关系进行数据聚合,并根据多车型知识拓扑结构生成样本的关系编码;最后,通过非线性变换组合基础特征,并与样本的关系编码结合,用于预测列车的运动状态。本发明将单一车型运行数据与多车型知识拓扑相结合,实现在真实运行数据有限的条件下多车型运行数据的连续建模与运动状态估计。

    自适应性能的列车加速方法

    公开(公告)号:CN115056825B

    公开(公告)日:2024-04-05

    申请号:CN202210536855.0

    申请日:2022-05-17

    Abstract: 本发明涉及自适应性能的列车加速方法,属于计算机与信息科学技术领域。本发明首先对含噪的列车运行数据建立目标列车性能估计模型,拟合级位序列和速度与加速度之间的函数关系;然后依次查询不同速度区间下各级位对应加速度值,建立加速度随级位和速度变化的关系表,称为列车专属性能表;最后将加速度范围约束引入专属性能表,逐车生成与目标车辆相适配的推荐速度。本发明利用车辆专属性能表,对推荐加速度范围进行约束,生成与受控列车匹配的自适应性能推荐速度,减少级位切换频率,提高自动驾驶平稳性及节能水平。

    强化多模态语义的对比学习代码搜索技术

    公开(公告)号:CN117668159A

    公开(公告)日:2024-03-08

    申请号:CN202311674549.4

    申请日:2023-12-07

    Abstract: 本发明涉及强化多模态语义的对比学习代码搜索技术,属于自然语言处理与机器学习领域。本发明首先将代码片段表示为token序列、抽象语法树和程序表达式图三种模态,利用BERT模型生成各模态特征向量,并拼接为联合代码特征向量;然后通过构建一种对比损失函数,缩小查询语句与对应代码片段在特征空间中的距离;最后利用余弦相似度计算查询语句特征向量与联合代码特征向量的距离并排序,输出代码搜索结果。本发明针对现有方法未充分提取代码结构特征、查询语句与代码片段存在语义鸿沟的问题,提出强化多模态语义的对比学习代码搜索技术,提高代码搜索的准确率。

Patent Agency Ranking