-
公开(公告)号:CN118012495A
公开(公告)日:2024-05-10
申请号:CN202410032227.8
申请日:2024-01-09
Applicant: 清华大学
Abstract: 本申请涉及一种智能驾驶计算平台功能软件重构和可视化方法及装置,其中,方法包括:按照预设分析顺序分析目标智能驾驶源代码的函数架构,得到函数树;重构目标智能驾驶源代码,得到目标计算机语言代码,并根据函数树、预设测试顺序等判断其与目标智能驾驶源代码和目标计算机语言代码的执行功能是否一致;当目标智能驾驶源代码和目标计算机语言代码的执行功能一致时,对目标计算机语言代码进行前端集成图形化处理,生成可视化目标计算机语言代码,并将其部署在相应硬件平台中。由此,解决了现有自动驾驶技术核心算法迁移到C++难度较大,且其开发效率、集成效率和验证效率较低;此外,当前行业缺乏统一标准,较难提炼共性技术赋能行业发展等问题。
-
公开(公告)号:CN117521838A
公开(公告)日:2024-02-06
申请号:CN202210879625.4
申请日:2022-07-25
IPC: G06N20/00 , G06F18/214 , G06F18/21
Abstract: 本发明提供了一种自动驾驶决策功能训练方法、系统及存储介质,上述方法包括:获取自动驾驶数据集,并在自动驾驶数据集中随机采样得到训练数据集;根据训练数据集以及设定的策略更新步数和策略参数计算得到随机梯度,并利用随机梯度计算得到无偏差的共轭动量;根据无偏差的共轭动量以及设定的策略参数学习率和速度因子,计算得到与策略参数对应的自适应学习率;基于无偏差的共轭动量和自适应学习率对所述策略参数进行更新;对所述策略更新步数进行迭代计算,在达到设定的最大策略更新步数的情况下,得到优化后的策略参数,以使自动驾驶决策功能训练系统采用优化后的策略参数进行自动驾驶决策,从而有效保障自动驾驶决策功能的智能性。
-
公开(公告)号:CN117389275A
公开(公告)日:2024-01-12
申请号:CN202311445655.5
申请日:2023-11-02
Applicant: 清华大学
IPC: G05D1/43 , G05D1/633 , G05D1/644 , G05D109/10
Abstract: 本申请涉及汽车智能驾驶技术领域,特别涉及一种自动驾驶汽车的显式控制律设计方法,其中,方法包括:构建具有仿射结构的车辆动力学模型;基于车辆动力学仿射模型,将跟踪避障约束型最优控制问题的目标函数与约束条件转换为控制李雅普诺夫函数与控制障碍函数;将控制李雅普诺夫函数与控制障碍函数进行加权相加,以构建控制李雅普诺夫‑障碍函数;利用控制李雅普诺夫‑障碍函数的梯度,动力学模型的状态转移矩阵和控制输入转移矩阵来设计控制自动驾驶汽车的显式控制律。由此,解决相关技术中,由于需要大规模迭代计算求解避障跟踪控制中约束型最优控制问题,面对多障碍物情况时,计算复杂度骤增,不能满足毫秒级的车载控制器实时性和安全性的问题。
-
公开(公告)号:CN117313819A
公开(公告)日:2023-12-29
申请号:CN202311379749.7
申请日:2023-10-23
Applicant: 清华大学
IPC: G06N3/082 , G06N3/0499
Abstract: 本发明公开了一种用于伊辛机的多层前馈神经网络训练方法,该方法包括监督学习任务构建、问题形式转化、网络参数求解;其中监督学习任务构建是在训练数据集和量化神经网络参数上进行的二次有约束二值优化问题建模;其中问题形式转化是将构建的二次有约束二值优化问题转化为二次无约束二值优化问题;其中网络参数求解是在伊辛机上求解二次无约束二值优化问题的最优解,并对最优解进行解码得到最优量化神经网络参数,得到训练好的多层前馈神经网络。本发明实现了在伊辛机上训练多层前馈神经网络,作为一种非梯度训练方法提供了传统反向传播方法的替代方法。
-
公开(公告)号:CN113460074B
公开(公告)日:2023-11-07
申请号:CN202010238170.9
申请日:2020-03-30
IPC: B60W60/00
Abstract: 本发明涉及自动驾驶人工接管请求时机调节方法及系统,能实现高的用户体验和接管质量。自动驾驶人工接管请求时机调节方法,在驾驶状态达到从自动驾驶模式转换为人工驾驶模式的自动驾驶系统性能边界之前向驾驶员发出接管请求,包括:构建个体驾驶员数据库步骤,将驾驶员完成一次接管记为一个接管事件并将和各接管事件所对应的数据组储存于该驾驶员的个体驾驶员数据库;接管请求提示步骤,计算驾驶员对于驾驶控制权的接管准备就绪程度R,并设定向驾驶员发出所述接管请求的提前时间T;接管质量评估步骤,根据驾驶员的实际操作数据计算接管事件的接管质量P;以及个体驾驶员数据库更新步骤,更新所述个体驾驶员数据库中的所述作用系数α′、β′。
-
公开(公告)号:CN114084155B
公开(公告)日:2023-10-20
申请号:CN202111349214.6
申请日:2021-11-15
Applicant: 清华大学
Abstract: 本申请涉及涉及一种预测型智能汽车决策控制方法、装置、车辆及存储介质,方法包括:基于地图信息和交通参与者的历史轨迹,对周围交通参与者建立预测模型,并利用有标签的数据集对预测模型进行参数初始化,生成初始周车运动预测模型;以智能汽车的驾驶目标作为优化对象,根据与环境的不断交互数据循环更新初始周车运动预测模型,生成最终周车运动预测模型;将最终周车运动预测模型嵌入智能汽车的决策控制系统,使得决策控制系统根据最终周车运动预测模型预测的周车运动生成对应的决策控制指令,并控制智能汽车执行决策控制指令,从而通过迭代模型驱动的自进化式策略评估与策略提升过程,实现智能车辆预测型最优策略求解方案。
-
公开(公告)号:CN116805294A
公开(公告)日:2023-09-26
申请号:CN202211545016.1
申请日:2022-12-02
Applicant: 清华大学
IPC: G06T5/50 , G01M17/007 , G06T7/73 , G06V20/56
Abstract: 一种增强环境场景的方法,包括:从自动驾驶车辆获得图像,图像由安装在自动驾驶车辆上的相机捕获并且描绘自动驾驶车辆周围环境;生成包含一个或多个虚拟对象的虚拟对象图形,当在图像上渲染虚拟对象图形产生对象增强图像;生成表征天气宏观静态效果的全局场景图形;生成表示至少一个具体天气动态效果的天气动态效果图形;基于虚拟对象图形、天气全局场景图形和天气动态效果图形,合成生成环境增强图像,导致环境的视觉表示如同环境在经历预定天气条件和交通环境时将表现的那样;以及将合成环境增强图像输入到自动驾驶车辆的车载车辆控制器中,使得自动驾驶车辆基于环境增强图像执行至少一个自动驾驶操作。
-
公开(公告)号:CN116304608A
公开(公告)日:2023-06-23
申请号:CN202310154061.2
申请日:2023-02-23
Applicant: 清华大学
IPC: G06F18/211 , G06F18/2415 , G06N20/00
Abstract: 本公开提供的适用于智能汽车的结构化道路场景生成方法,包括:选取基准道路场景结构,构建其“结点‑边”图结构模型,该模型中的结点包括与交叉路口相对应的中心结点和与道路场景结构的出入口相对应的端结点,该模型中的边用于连接结点,对应道路场景结构的出入口之间的相邻两向所有车道形成的路段;对“结点‑边”图结构模型中的结点和边进行随机化处理,生成随机化“结点‑边”图结构模型;判断随机化“结点‑边”图结构模型是否合规,若不合规,则重新生成随机化“结点‑边”图结构模型;将合规的随机化“结点‑边”图结构模型对应的道路场景结构输出。本公开可解决智能汽车在特定场景训练的驾驶策略泛化性能差、在线路径规划实时性差等问题。
-
公开(公告)号:CN116070448A
公开(公告)日:2023-05-05
申请号:CN202310132213.9
申请日:2023-02-09
Applicant: 清华大学
Abstract: 本申请提出了一种智能决策算法与仿真平台的联合互锁调用方法,涉及联合仿真技术领域,包括在智能决策算法处创建算法侧模块,在仿真平台处创建平台侧模块,并进行总初始化操作,其中,算法侧模块与平台测模块在同一个进程的两个线程内分别运行;分别对算法侧模块和平台侧模块进行重置操作,并重置共享上下文状态;分别对算法侧模块和平台侧模块进行步进操作,并借助共享上下文进行数据交换;在智能决策算法要求重置称为一个采样循环时,停止步进操作;反复执行采样循环直至智能决策算法运行结束。本申请在智能决策算法侧和仿真平台侧各部署一个功能模块,且仅依赖于少量线程同步原语,在同一进程内解决控制权冲突,保证了高通信效率,性能损失小。
-
公开(公告)号:CN116011123A
公开(公告)日:2023-04-25
申请号:CN202310154088.1
申请日:2023-02-23
Applicant: 清华大学
IPC: G06F30/15 , G06F30/20 , G06F119/02
Abstract: 本公开提供的智能汽车连续时间最优决控模型构建及求解方法,包括:构建智能汽车连续时间最优决控模型,以自车的终端状态性能函数和从初始时刻至终端时刻的有限时域内的效用函数的连续时间积分作为目标函数,效用函数用于表达自车的综合性能,以智能汽车的连续时间动力学方程作为最优决控模型的运动约束,以参数化最优策略作为最优决控模型的输出;对最优决控模型进行迭代求解,每次迭代中,首先从初始时刻至终端时刻前向求解终端时刻的自车状态,然后从终端时刻至初始时刻后向求解策略梯度,并以梯度下降的方式更新参数化策略的参数,不断重复上述迭代过程直至参数化策略的参数收敛,得到最优参数化策略。本公开精度高、适用范围广、节省内存。
-
-
-
-
-
-
-
-
-