一种倾角传感器的圆锥运动测试方法

    公开(公告)号:CN113049002B

    公开(公告)日:2023-06-09

    申请号:CN202011139990.9

    申请日:2020-10-22

    Abstract: 本发明公开了一种倾角传感器的圆锥运动测试方法,该方法包括:建立随动坐标系,通过运动控制器控制伺服电机驱动支链运动,生成绕Z轴的圆锥运动;通过激光跟踪仪校准Stewart平台的球铰坐标、虎克铰坐标、伸缩腿初始偏移等运动学参数,建立Stewart平台精确的位置正解模型,消除伺服电机闭环响应的振幅衰减和相位滞后影响;然后将MEMS倾角传感器安装在动平台上,通过位置正解模型解算实际的圆锥运动轨迹作为参考测量值,与倾角传感器的测量值相比较,完成对MEMS倾角传感器的测试与校准。且Stewart平台可以生成绕Z轴的圆锥运动,且锥点可根据需求进行改变,相较于一维旋转运动,圆锥运动更具有优越性。

    一种高频角振动转台控制方法

    公开(公告)号:CN112304336B

    公开(公告)日:2023-04-07

    申请号:CN202011141639.3

    申请日:2020-10-22

    Abstract: 本发明公开了一种高频角振动转台控制方法,该方法包括:通过控制器向驱动器发送电流控制信号来驱动力矩电机运动,同时控制器接收光栅传感器的角位移反馈;控制器利用光栅传感器的角位移反馈和电流命令,通过高通滤波器和低通滤波器组成的互补滤波器,结合光栅传感器在低频段和电流命令在高频段的优势,实现宽频带的角运动状态估计;最后通过构建位置闭环,实现角位移、角速度以及角振动运动。本发明在保证测量精度的前提下,具有同时满足传感器静态定位校准、匀速校准以及高频角振动校准的特点。本发明方法有效解决了圆光栅分辨率限制而导致的高频角振动测量误差,降低了系统噪声、相位延迟,提升了系统响应能力和抗扰动性能。

    一种基于DataSocket通信的激光测量装置

    公开(公告)号:CN115628801A

    公开(公告)日:2023-01-20

    申请号:CN202211124720.X

    申请日:2022-09-15

    Abstract: 本发明公开了一种基于DataSocket通信的激光测量装置,包括标准振动台、功率放大器、激光测振仪、上位机激光测量仪、下位机振动控制仪、标准传感器、被校传感器、信号处理及显示设备。功率放大器用于发大输出信号激励振动台;所述激光测振仪用于测量标准振动台的振动量值;上位机激光测量仪用于采集传输激光干涉仪和被校加速度传感器的电压信号;下位机振动控制仪用于发出标准激励信号和采集标准传感器输出的电压信号;标准传感器用于下位机振动控制仪的振动控制;信号处理及显示设备用于处理及显示采集到的激光干涉信号和被校传感器的信号,进而实现被校传感器的高精度校准。本发明基于DataSocket通信技术,有效解决了目前激光测量系统操作复杂的问题。

    一种基于Stewart平台的惯性测量单元校准方法

    公开(公告)号:CN114459502A

    公开(公告)日:2022-05-10

    申请号:CN202111553099.4

    申请日:2021-12-17

    Abstract: 本发明公开了一种基于Stewart平台的惯性测量单元校准方法,将由三轴向加速度传感器和三轴向角度传感器构成的惯性测量单元紧固于Stewart平台的动平面中心位置;通过控制Stewart平台分别沿X、Y及Z三个方向产生不同频率和幅值的直线振动,为三轴向加速度传感器提供激励加速度;控制Stewart平台分别绕X、Y及Z三个方向产生不同频率和幅值的角振动,为三轴向角度传感器提供激励角度。利用数据采集设备采集惯性测量单元的输出信号,并进行信号处理;结合机器视觉方法测量的激励信号与数据采集设备采集的输出信号处理结果实现基于Stewart平台的惯性测量单元校准。相比于现有的方法,该方法无需多次重复安装惯性测量单元即可完成校准,具有灵活、简单、高效等优势。

    一种基于单目视觉的角速率与角加速度测量方法

    公开(公告)号:CN114088088A

    公开(公告)日:2022-02-25

    申请号:CN202111348903.5

    申请日:2021-11-15

    Abstract: 本发明公开了一种基于单目视觉的角速率与角加速度测量方法,该方法主要包括:首先,利用采集与成像设备获取紧固于旋转运动发生装置工作台面的特征标志运动序列图像;其次,采用模板匹配方法确定特征标志运动序列图像上仅包含运动特征的感兴趣区域,并通过具有不同尺寸的圆形模板与标志图像循环匹配确定不同拍摄距离与旋转位置采集图像的感兴趣区域;然后,使用直线分段检测方法实现感兴趣区域内的特征直线边缘亚像素提取,并通过边缘点数的约束只保留运动方向上的直线边缘;最后,利用提取的运动方向直线边缘解算旋转运动的角速率与角加速度。

    一种基于单目视觉的平面运动位移及轨迹测量方法

    公开(公告)号:CN112444233A

    公开(公告)日:2021-03-05

    申请号:CN202011139972.0

    申请日:2020-10-22

    Abstract: 本发明公开了一种基于单目视觉的平面运动位移及轨迹测量方法,该方法主要包括:首先利用摄像机采集紧固于被测运动平面上的高对比度特征标志运动序列图像;其次通过亚像素边缘检测方法提取序列图像在X与Y方向的直线运动特征边缘亚像素坐标点,并将亚像素坐标点转换为对应的世界坐标点;然后基于最小二乘原理拟合特征边缘的世界坐标获得相应的边缘直线,实现X与Y方向运动位移的解耦测量;最后利用测量的X与Y方向运动位移获得运动平面的轨迹。相比于现有的测量方法,本方法具有非接触、低成本、灵活、高效、简单等优势,可实现高精度的平面运动位移及轨迹测量,且有利于机器视觉平面运动测量及六自由度运动测量的动态校准与溯源。

    一种高频角振动转台控制方法

    公开(公告)号:CN112304336A

    公开(公告)日:2021-02-02

    申请号:CN202011141639.3

    申请日:2020-10-22

    Abstract: 本发明公开了一种高频角振动转台控制方法,该方法包括:通过控制器向驱动器发送电流控制信号来驱动力矩电机运动,同时控制器接收光栅传感器的角位移反馈;控制器利用光栅传感器的角位移反馈和电流命令,通过高通滤波器和低通滤波器组成的互补滤波器,结合光栅传感器在低频段和电流命令在高频段的优势,实现宽频带的角运动状态估计;最后通过构建位置闭环,实现角位移、角速度以及角振动运动。本发明在保证测量精度的前提下,具有同时满足传感器静态定位校准、匀速校准以及高频角振动校准的特点。本发明方法有效解决了圆光栅分辨率限制而导致的高频角振动测量误差,降低了系统噪声、相位延迟,提升了系统响应能力和抗扰动性能。

    一种高精度的外差式激光振动校准灵敏度相位测量方法

    公开(公告)号:CN106895904B

    公开(公告)日:2020-02-11

    申请号:CN201611164668.5

    申请日:2016-12-16

    Abstract: 本发明公开了一种高精度的外差式激光振动校准灵敏度相位测量方法,本方法主要包括:利用高分辨率示波器(HDO)与PUSAM实现模拟混频器与低通滤波器的时间延时测量;基于PUSAM与模拟混频器及低通滤波器实现数据采集卡的时间延时测量;基于PUSAM实现外差式激光多普勒信号的解调得到振动信号初相与基于SAM实现被校传感器及测量仪输出信号的初相测量;最后依据数据采集卡的时间延时修正被测振动信号的初相,实现被校振动传感器及测量仪的灵敏度相位测量。相比于现有的灵敏度相位测量方法,本方法考虑数据采集卡的时间延时对于振动灵敏度相位校准引入的相位延时,有效提高了灵敏度相位的测量精度。

    一种用于ADC相频响应测试的方法

    公开(公告)号:CN108061820B

    公开(公告)日:2020-02-07

    申请号:CN201711426319.0

    申请日:2017-12-26

    Abstract: 本发明公开了一种用于ADC相频响应测试的方法,包括:基于高分辨率示波器(HDO)与相位展开正弦逼近法(PUSAM)测量模拟混频器与低通滤波器(MLPF)对特定载波频率窄带宽调频(FM)信号的降频转换时间延时;基于Nyquist采样定理与带通采样定理及保护带宽确定ADC采集FM信号所需的有效采样频率,以确保采集FM信号的有效频谱排列;ADC以有效采样频率同时采集模拟MLPF降频转换前后的高、低载波频率FM信号,基于PUSAM实现采集FM信号的解调,利用测量的模拟MLPF降频转换时间延时修正低载波频率FM信号的调制信号初相,通过修正后两FM信号的调制信号初相计算ADC在高载波频率的相频响应。本发明能够准确、快速的实现ADC相频响应测试,具有测试过程简单、频率范围宽、频率可高于ADC最大采样频率、多通道同时测试的优势。

    一种基于视觉的高精度旋转角度测量方法

    公开(公告)号:CN110672040A

    公开(公告)日:2020-01-10

    申请号:CN201910907698.8

    申请日:2019-09-24

    Abstract: 本发明公开了一种基于视觉的高精度旋转角度测量方法,该测量方法包括:采用一种由四个圆形包络矩形的特征标志,该特征标志紧固于转台的旋转面,其与旋转面具有相同的旋转角度;基于模板匹配确定图像的感兴趣区域ROI,消除图像背景相似边缘对特征标志中矩形边缘检测影响;然后基于Zernike矩的亚像素边缘检测方法实现矩形长边缘的高精度提取,得到矩形两条长边缘的亚像素坐标;基于最小二乘拟合法拟合这两条长边缘的亚像素坐标,得到对应的拟合边缘直线并计算这两条直线斜率的均值,利用两斜率均值的反正切三角函数解算旋转位置相对于基准位置的旋转角度。本发明方法解决了现有旋转角度测量方法存在的测量精度有限、过程繁琐、系统复杂等问题。

Patent Agency Ranking