一种多目标跟踪方法、终端设备及存储介质

    公开(公告)号:CN116452631A

    公开(公告)日:2023-07-18

    申请号:CN202310306107.8

    申请日:2023-03-27

    Applicant: 华侨大学

    Abstract: 本发明涉及一种多目标跟踪方法、终端设备及存储介质,该方法中包括:读取视频信息;对视频信息中的帧图像进行目标分割,得到目标的像素级信息和表观特征信息;基于卡尔曼滤波算法对各帧图像中的轨迹进行预测;基于前一帧图像中的轨迹和当前帧图像中目标的表观特征信息,计算两者之间的外观相似度,提取外观相似度大于相似度阈值的轨迹和目标作为预匹配轨迹和预匹配目标,将预匹配目标存入匹配目标集;计算预匹配轨迹与预匹配目标之间的代价矩阵,计算未匹配轨迹与未匹配目标之间的Mask‑IoU分数,将两者融合得到最终代价矩阵;通过匈牙利算法得到轨迹匹配结果。本发明相比于现有方法可以兼具效率与性能。

    基于3D-HEVC深度图模式预测的深度图编码方法、装置及可读介质

    公开(公告)号:CN116405683A

    公开(公告)日:2023-07-07

    申请号:CN202310449794.9

    申请日:2023-04-24

    Applicant: 华侨大学

    Abstract: 本发明公开了一种基于3D‑HEVC深度图模式预测的深度图编码方法、装置及可读介质,通过构建基于卷积网络的DMM模式预测模型并进行训练,得到经训练的DMM模式预测模型;将待编码深度图序列划分得到第一级别尺寸下的若干个当前待编码块,将当前待编码块输入经训练的DMM模式预测模型,输出的网络预测值为当前待编码块的编码过程中是否需要将DMM模式加入对应尺寸的全率失真代价计算列表的标签值;采用3D‑HEVC编码器对当前待编码块进行编码,在编码过程中调用网络预测值,并确定当前待编码块在对应尺寸下的最佳模式;以判断是否需要将DMM模式加入对应尺寸的全率失真代价计算列表,可避免直接将DMM模式加入全率失真代价计算列表,导致对DMM模式冗余的率失真计算过程。

    基于自适应3D卷积的屏幕视频质量评价方法及装置

    公开(公告)号:CN115424168A

    公开(公告)日:2022-12-02

    申请号:CN202210975931.8

    申请日:2022-08-15

    Applicant: 华侨大学

    Abstract: 本发明公开了一种基于自适应3D卷积的屏幕视频质量评价方法及装置,获取屏幕视频,基于局部视频活动度Γ(Px,y,t)对屏幕视频进行自适应分割,得到屏幕视频序列集合,屏幕视频包括参考屏幕视频和失真屏幕视频,屏幕视频序列集合包括参考屏幕视频序列集合和失真屏幕视频序列集合;通过3D卷积神经网络分别提取参考屏幕视频序列集合的参考时空卷积特征STr以及失真屏幕视频序列集合的失真时空卷积特征STd;采用双尺度卷积神经网络对参考时空卷积特征STr和失真时空卷积特征STd实现双通道时空特征融合,计算得到失真屏幕视频的质量评价分数。着重于考虑人眼视觉系统特性及屏幕视频本质信息,模拟人类视觉系统的多通道视觉处理过程,从不同角度实现对失真屏幕视频的质量预测。

    针对H.266/VVC屏幕内容帧内CU划分的快速预测方法及装置

    公开(公告)号:CN114710667A

    公开(公告)日:2022-07-05

    申请号:CN202210269314.6

    申请日:2022-03-18

    Applicant: 华侨大学

    Abstract: 本发明公开了一种针对H.266/VVC屏幕内容帧内CU划分的快速预测方法及装置,通过收集屏幕内容视频建立数据库,用于训练模型;构建宽度自适应网络模型,预测两种不同尺寸CU的划分方式,预测步骤如下:先采用网络模型对64×64大小的CU进行划分方式预测,若为不划分,则停止CU的RD代价计算,若为划分,则得到4个32×32大小的CU,则采用网络模型对32×32大小的CU的划分方式进行预测,若为不划分,则停止RD的代价计算,若为四叉树划分,则得到4个16×16的CU:若为多种类型叉树划分,则需要依靠标准编码器进行计算;最后设定适当的预设阈值来提高预测准确率。本发明能够在保持H.266/VVC编码效率的前提下,有效地降低H.266/VVC屏幕内容的帧内预测编码计算复杂度。

    基于多尺度高斯球的动态场景重建方法及装置

    公开(公告)号:CN119991973A

    公开(公告)日:2025-05-13

    申请号:CN202510480150.5

    申请日:2025-04-17

    Applicant: 华侨大学

    Abstract: 本发明公开了一种基于多尺度高斯球的动态场景重建方法及装置,涉及计算机视觉领域,包括:采用运动恢复结构算法对待重建的视频帧序列进行处理,生成稀疏点云,对稀疏点云进行初始化,生成3D高斯球集合;采用双域变形模型和自适应时间戳对3D高斯球集合进行处理,得到变形的3D高斯球集合;对变形的3D高斯球集合进行多尺度高斯处理,生成多尺度高斯球集合;对多尺度高斯球集合进行基于像素覆盖率的高斯筛选,得到优化后的多尺度高斯球集合;基于优化后的多尺度高斯球集合进行Alpha混合处理,重建得到抗锯齿动态渲染场景图像。本发明解决了目前动态场景重建的计算开销大且存在混叠效应等问题。

    基于特征蒸馏和层间信息交互的轻量级图像超分辨率方法

    公开(公告)号:CN119359547B

    公开(公告)日:2025-05-02

    申请号:CN202411936474.7

    申请日:2024-12-26

    Applicant: 华侨大学

    Abstract: 本发明设计图像处理技术领域,公开了一种基于特征蒸馏和层间信息交互的轻量级图像超分辨率方法,包括以下步骤:构建动态非对称蒸馏模块和层间全维信息交互模块;基于动态非对称蒸馏模块和层间全维信息交互模块构建轻量级图像超分辨率网络;利用所述轻量级图像超分辨率网络实现图像超分辨率;其中,所述轻量级图像超分辨率网络利用卷积层对输入的低分辨率图像进行浅层特征提取,利用动态非对称蒸馏模块和层间全维信息交互模块对浅层特征进行深层特征提取,利用卷积层和上采样对深层特征进行图像重建,得到高分辨率图像。本发明以更轻量、更有效的方式提取关键特征,从而实现在提升重建效果的同时,最小化计算开销和参数量。

Patent Agency Ranking