-
公开(公告)号:CN104445313B
公开(公告)日:2016-03-02
申请号:CN201410602100.1
申请日:2014-10-30
Applicant: 北京矿冶研究总院
IPC: C01F7/02
Abstract: 本发明公开了一种从粉煤灰中酸碱联合提取氧化铝的方法。将粉煤灰与适量浓硫酸混合均匀、熟化后,利用粉煤灰中的残炭和适量补充还原剂,进行高温快速还原焙烧脱硫,含硫烟气通过制酸实现硫酸再生循环利用,还原焙砂采用碱浸法生产氧化铝。本发明的方法综合了粉煤灰酸法与碱法提取氧化铝的优点,并有效规避了二者的缺点。无常规酸法工艺中高耗能的蒸发结晶铝盐和铝盐结晶水分解过程,节约了大量能耗;相比常规碱法工艺,无需高耗能的烧结过程,且渣量低并可作为硅原料再利用,废弃物产出很少,实现真正的减量化绿色清洁生产;氧化铝产品质量好,回收率高,能耗低,设备腐蚀小,易于实现大规模工业化。
-
公开(公告)号:CN104445312B
公开(公告)日:2016-03-02
申请号:CN201410601386.1
申请日:2014-10-30
Applicant: 北京矿冶研究总院
Abstract: 本发明公开了一种粉煤灰与煤矸石协同处理提取氧化铝的方法。将煤矸石与粉煤灰按一定比例混合后,与适量硫酸拌匀熟化,然后还原焙烧,焙烧产出的含硫烟气收集制取硫酸,实现硫酸的再生循环。将还原焙砂用含氢氧化钠的溶液进行浸出铝,碱浸矿浆固液分离后得到的铝酸钠溶液经种分或碳分制备氢氧化铝,种分母液或碳分母液苛化处理后循环使用。本发明的方法利用煤矸石中的炭做酸解步骤硫酸铝原位脱水、热解再生硫酸的还原剂和热源,在提取氧化铝的同时,实现矸石中炭资源的综合利用,综合了煤矸石或粉煤灰酸法与碱法提取氧化铝的优点,废弃物产出很少,氧化铝产品质量好,回收率高,能耗低,设备腐蚀小,易于实现大规模工业化。
-
公开(公告)号:CN104445314B
公开(公告)日:2015-12-09
申请号:CN201410602122.8
申请日:2014-10-30
Applicant: 北京矿冶研究总院
Abstract: 本发明公开了一种从煤矸石或高岭石矿物中酸碱联合提取氧化铝的方法。将粉碎的煤矸石或高岭石矿物原料与适量浓硫酸混合后熟化,然后高温快速还原脱硫,含硫烟气通过制酸实现硫酸再生循环利用,还原焙砂采用碱浸法生产氧化铝。本发明的方法综合了煤矸石或高岭石矿物原料酸法与碱法提取氧化铝的优点,并有效规避了二者的缺点。无需常规酸法工艺中高耗能的蒸发结晶铝盐和铝盐结晶水分解过程,节约了大量能耗;相比常规碱法工艺,无需高耗能的烧结过程,且渣量低并可作为硅原料再利用,废弃物产出很少,实现真正的减量化绿色清洁生产;氧化铝产品质量好,回收率高,能耗低,设备腐蚀小,易于实现大规模工业化。
-
公开(公告)号:CN103526019B
公开(公告)日:2015-08-12
申请号:CN201310515704.8
申请日:2013-10-28
Applicant: 北京矿冶研究总院
CPC classification number: Y02P10/234
Abstract: 针对含银硒等多金属的钒矿,提供一种采用硫酸熟化、氧化浸出工艺从多金属伴生钒矿中综合回收硒、银、钒的方法,具体将钒矿干式破碎、细磨至小于0.154mm,然后加入一定量的浓硫酸混合均匀,150~300℃的温度下熟化1~8h,然后加入水和氧化剂进行搅拌浸出,钒和硒被浸出进入浸出液中,银留在浸出渣中,浸出液采用还原沉淀出粗硒,沉硒后液继续通过萃取或离子交换回收钒,含银的浸出渣采用常规的工艺回收银。该工艺通过硫酸熟化,提高矿物浸出活性,从而提高浸出速度。具有流程短、操作简单、能耗低、金属回收率高、生产成本低等优点,达到银钒多金属矿清洁节能、环境友好的综合回收的目的。
-
公开(公告)号:CN104762466A
公开(公告)日:2015-07-08
申请号:CN201510185506.9
申请日:2015-04-17
Applicant: 北京矿冶研究总院
CPC classification number: Y02P10/234 , C22B1/00 , C22B3/0004 , C22B3/04 , C22B3/44 , C22B47/00 , C25B1/21 , C25C1/10
Abstract: 一种低品位氧化锰矿生产电解锰或二氧化锰的制液方法,将低品位氧化锰矿粉用电解系统排出的阳极液预浸,脱除铁、铝、钙、镁等非锰耗酸物质,过滤得到预浸液和预浸渣;将预浸渣与煤粉等炭质还原剂混合拌匀,加入浓硫酸拌匀得到拌合料,控制拌合料中的硫酸初始浓度≥70%,利用反应热自热拌合料还原熟化;用前述预浸液对熟化料搅拌浸出,浸出矿浆经氧化中和、净化除杂,过滤得到的硫酸锰溶液配入适量电解添加剂后电解生产金属锰或二氧化锰。本方法利用廉价、易得的煤粉等炭质还原剂,在低温下直接还原氧化锰矿,能耗低,成本低,无烟气污染问题;利用阳极液预浸脱除铁、铝、钙、镁等非锰耗酸物质,实现了系统的酸平衡,降低了酸耗。
-
公开(公告)号:CN104313346A
公开(公告)日:2015-01-28
申请号:CN201410601737.9
申请日:2014-10-30
Applicant: 北京矿冶研究总院
CPC classification number: Y02P10/234
Abstract: 本发明公开了一种明矾石高温快速还原脱硫回收铝、钾和镓的工艺。明矾石矿粉在一定温度、时间下,进行焙烧脱水得到明矾石熟料。在按一定煤比和固体还原剂煤混合均匀后,在一定温度下进行熟料的高温快速还原焙烧脱硫。脱硫焙砂进行水浸提钾并除去焙砂中残余硫,水浸液进行蒸发结晶得到国标产品硫酸钾。对水浸渣进行低温低碱拜耳法溶出铝、少量的钾和金属镓。对溶出液进行种分回收氧化铝,种分母液返回溶出工序。定期对部分溶出液进行碳分,回收其中的铝、钾和镓,得到氧化铝、碳酸钾和碳酸钠以及富镓沉淀物。低温低碱拜耳法的溶出渣可以作为建筑制品的硅质原料。
-
公开(公告)号:CN104313301A
公开(公告)日:2015-01-28
申请号:CN201410602098.8
申请日:2014-10-30
Applicant: 北京矿冶研究总院
CPC classification number: Y02P10/234
Abstract: 本发明公开了一种从地开石、明矾石混合矿中酸碱联合提取提取铝、钾的方法。将含地开石、明矾石的混合精矿与适量浓硫酸混合均匀、熟化后,与还原剂在一定温度下进行高温快速还原焙烧脱硫,含硫烟气通过制酸实现硫酸再生循环利用,还原焙砂采用水浸提钾和碱浸生产氧化铝,并对镓进行富集回收。本发明的方法利用浓硫酸酸化强化了矿石中地开石等物相的分解,可以处理含地开石和明矾石的混合精矿,避免了复杂、低效的选矿分离,提高氧化铝的回收率,结合了传统碱法和酸法提取氧化铝的优点。本发明产出的氧化铝产品质量好,回收率高,能耗低,设备腐蚀小,易于实现大规模工业化。
-
公开(公告)号:CN104211094A
公开(公告)日:2014-12-17
申请号:CN201310219277.9
申请日:2013-06-04
Applicant: 北京矿冶研究总院
Abstract: 利用钾长石矿生产碳酸钾、碳酸钠和氧化铝的新工艺,采用预脱硅-碱石灰烧结溶出-碳分提铝-蒸发结晶分离钾、钠的方法综合回收钾长石矿中的铝、钾和钠资源。本工艺具有以下优点:技术方案合理,生产出活性硅酸钙、白炭黑、碳酸钠、碳酸钾和氧化铝。本工艺碳化分解过程使用烧结产生的CO2气体,原料成本极低,减少温室气体排放。烧结时因为预脱硅生料量减少约35%,硅钙渣量少30%左右;脱硅渣无需外加纯碱进行生料配比;洗涤活性硅酸钙的洗水可用于脱硅渣的洗涤,减少工艺用水量和废水量;丰富硅的产品形式,产出附加值高的白炭黑和活性硅酸钙;通过碳酸钠的苛化再生,实现整个工艺的碱自给和循环平衡。
-
公开(公告)号:CN102433435B
公开(公告)日:2014-06-25
申请号:CN201110442991.5
申请日:2011-12-27
Applicant: 北京矿冶研究总院
CPC classification number: Y02P10/234
Abstract: 一种萃取锗镓的萃取剂及其萃取方法,涉及一种湿法冶金萃取剂,特别是萃取镓锗的有机萃取剂及其萃取方法。其特征在于该萃取剂是以分子式为(RO)2P(O)NHOH的O,O-二烃基磷氧肟酸,式中R为C5—C18的直连或支链烷基,或为C4—C14直连或支链烷基取代的苯基。本发明的萃取剂对锗、镓等稀散金属有优异的萃取性能,选择性强、萃取率高、分相性能好。使用O,O-二烃基磷氧肟酸做萃取剂可萃取富集酸性水溶液中的锗或萃取富集酸性水溶液中的镓,实现稀散金属镓或锗与锌、铁、砷、锰、钙、镁等元素的分离。也可分步萃取分离酸性水溶液锗和镓,实现镓与锗的分离富集。
-
公开(公告)号:CN103526024A
公开(公告)日:2014-01-22
申请号:CN201310503134.0
申请日:2013-10-23
Applicant: 北京矿冶研究总院
CPC classification number: Y02P10/234
Abstract: 一种清洁环保的高铟高铁锌精矿综合回收方法,涉及一种以高铟高铁锌精矿为原料,采用湿法冶金方法综合回收锌、铟、铁的方法。其特征在于其综合回收过程是利用还原剂将锌焙砂热酸浸出液中的Fe3+还原为Fe2+;二段分离In/Fe,高铟渣进一步回收铟;In/Fe分离后液采用赤铁矿法除铁,获得可以作为铁精矿利用的铁渣;除铁后液返回中性浸出的过程。本发明的方法,流程简短,锌、铟、铁金属分离彻底,金属回收率高,铁渣实现资源化利用,环境友好。
-
-
-
-
-
-
-
-
-