-
公开(公告)号:CN110222416A
公开(公告)日:2019-09-10
申请号:CN201910486534.2
申请日:2019-06-05
Applicant: 重庆邮电大学
Abstract: 本发明请求保护一种基于大数据的工业蒸汽量预测方法,包括:101对锅炉的工况数据进行预处理操作;102根据工况数据的采集时间划分训练集数据、验证集数据;103建立多个机器学习模型,并进行模型融合操作;104通过建立的模型,根据锅炉传感器每分钟采集的工况数据对锅炉产生的蒸汽量进行预测。本发明主要是通过对锅炉工况数据进行预处理和分析,划分数据集,并利用已处理的工况数据建立多个机器学习模型,根据锅炉传感器每分钟采集的工况数据对锅炉产生的蒸汽量进行预测,为工业实时监测锅炉的燃烧效率提供服务。
-
公开(公告)号:CN110060102A
公开(公告)日:2019-07-26
申请号:CN201910313789.9
申请日:2019-04-18
Applicant: 重庆邮电大学
Abstract: 本发明请求保护一种基于偏标记学习的用户所在商铺定位大数据预测方法,包括:101对用户的购物状态数据进行预处理操作;102根据每个样本所对应的候选商铺集合构建偏标记数据集;103对偏标记数据集进行特征提取操作;104根据特征空间构建相似度图;105根据相似度图进行概率传播;106通过传播所收敛的概率,从偏标记数据集的候选商铺集合中预测出用户未来有行为互动的商铺。本发明主要是通过对用户历史数据进行预处理,提取特征,转换偏标记数据集,建立偏标记学习模型,根据用户的位置行为的偏标记数据集,从每个用户所对应的候选商铺集合中预测出用户未来有行为互动的商铺,使得用户能够获得更为精准的个性化推送服务,提高用户的购物体验。
-
公开(公告)号:CN110059183A
公开(公告)日:2019-07-26
申请号:CN201910221691.0
申请日:2019-03-22
Applicant: 重庆邮电大学
Abstract: 本发明请求保护一种基于大数据的汽车行业用户观点情感分类方法,包括101对数据进行预处理操作;102对数据进行特征工程构建操作;103建立多个机器学习模型包括LightGBM、随机森林、Catboost模型,并进行模型融合操作;104通过已建立的模型,根据文本内容、主题、情感分析等数据了解消费者。本发明主要是通过对文本内容、主题、情感分析等数据进行预处理、Jieba分词和分析数据提取特征,建立多个机器学习模型,从而预测汽车行业用户的情感,使得汽车厂商获得快速、准确的方式来了解消费者需求,使得汽车厂商能够根据消费者对汽车的情感对汽车做最有效的改进。
-
公开(公告)号:CN109783636A
公开(公告)日:2019-05-21
申请号:CN201811517941.7
申请日:2018-12-12
Applicant: 重庆邮电大学
IPC: G06F16/35 , G06F16/953
Abstract: 本发明请求保护一种基于分类器链的汽车评论主题提取方法,包括:101汽车评论文本数据预处理,对汽车论坛用户历史评论数据进行预处理操作;102评论文本向量化,使用加权TF-IDF方法对数据预处理后的每条文本进行向量化从而提取文本特征;103评论主题聚类划分,使用k-means算法对文本主题聚类划分,得到现有主题类别的一个划分;104局部多标签分类器链主题提取算法设计:将一条完整的分类器链转化为多条局部分类器链,同时每条局部分类器链采用距离类簇中心点由远到近的原则构建链,最后多条局部分类器链集成得到最终预测结果。本发明基于汽车论坛的用户历史评论数据,提取文本特征,设计改进的局部分类器算法,建立预测模型,从而预测每条评论属于哪些主题。
-
公开(公告)号:CN104915627B
公开(公告)日:2019-04-26
申请号:CN201410088106.1
申请日:2014-03-11
Applicant: 重庆邮电大学 , 腾讯科技(深圳)有限公司
Abstract: 本发明实施例公开了一种文字识别方法及装置,所述方法包括:接收输入的任一待识别文字;将所述待识别文字进行向量处理后,得到所述待识别文字的待识别特征集,所述待识别特征集包括待识别特征;根据所述待识别特征生成预设个数的待识别超边;将所述待识别超边与预先存储的超边库中的超边进行对比,当所述待识别超边与所述超边库中的超边匹配个数满足预设条件时,确定所述待识别文字识别成功。与现有技术相比,本发明能够提高文字的识别效率,同时尽量避免识别误差的产生。
-
公开(公告)号:CN109255651A
公开(公告)日:2019-01-22
申请号:CN201810961106.6
申请日:2018-08-22
Applicant: 重庆邮电大学
Abstract: 本发明公开了一种基于大数据的搜索广告转化智能预测方法,包括以下步骤:数据预处理;根据行为时间对数据进行划分操作;根据搜索广告、用户、商铺历史数据进行特征工程构建操作;根据特征工程特征分布进行特征调整操作;建立多个机器学习模型,并进行模型融合操作;通过已建立模型,根据搜索广告、用户、商铺数据预测广告转化率。本发明主要通过对搜索广告、用户、商铺数据进行预处理和分析提取特征,建立多个机器学习模型并进行stacking模型融合,从而准确预测广告的转化率,能够使得广告主匹配到最可能购买自家商品的用户;另一方面,也能让用户快速找到购买意愿最强的商品,从而提升在电商平台中的用户体验。
-
公开(公告)号:CN104820924B
公开(公告)日:2018-04-27
申请号:CN201510242186.6
申请日:2015-05-13
Applicant: 重庆邮电大学
Abstract: 一种基于笔迹鉴定的网上安全支付系统,包括:101用户注册模块;102接收模块:用于接收用户输入的任一待笔迹签名样本,进行多特征融合,将多种属性特征值作为样本的特征值,挖掘各个属性值对正确识别本人签名贡献程度,降序排序,按照贡献值排序找一组最优权值融合多种特征;103学习、训练模块:将综合后的多特征集转化为1到8的数据后作为基于邻域超网络分类器的输入,进行训练和测试;104鉴定模块:用户输入签名,将待识别超边与所述超边库中的超边进行对比来鉴定用户笔迹的真伪;S105支付模块:将笔迹鉴定应用到网上安全支付。本发明具有更高的稳定性、安全性、便捷性;同时结合了多特征融合技术,能够提高签名样本的识别效率,以及准确性。
-
公开(公告)号:CN107301562A
公开(公告)日:2017-10-27
申请号:CN201710341039.3
申请日:2017-05-16
Applicant: 重庆邮电大学
IPC: G06Q30/02
CPC classification number: G06Q30/0211 , G06Q30/0202
Abstract: 本发明请求保护一种O2O优惠券使用大数据预测方法,包括:101对用户的历史消费数据集进行预处理操作;102对用户的历史消费数据集打标,划分和构建训练集和预测集;103对用户的历史消费数据集进行特征工程构建;104特征选择和不平衡数据的处理;105对上述数据进行多分类器集成学习;106通过已建立模型,根据用户历史消费数据对用户的优惠券使用情况进行预测,优化O2O优惠券的投放。本发明主要是通过对用户消费数据的处理及对数据进行多分类器集成学习,建立预测模型,从而预测用户未来的优惠券使用情况,对O2O优惠券的投放进行优化。
-
公开(公告)号:CN106570178A
公开(公告)日:2017-04-19
申请号:CN201610991719.5
申请日:2016-11-10
Applicant: 重庆邮电大学
IPC: G06F17/30
Abstract: 本发明请求保护一种基于图聚类的高维文本数据特征选择方法,该方法包括:剔除不相关特征,并构造加权无向图;再结合社区发现算法快速地将特征聚类;并以“最大相关最小冗余”原则搜索类簇空间,剔除类簇内的冗余特征;最后根据特征与类别间的关系挑选出最佳特征子集。本发明旨在利用图能体现特征空间分布的特性,结合高效的社区发现进行特征聚类,选取出具有代表性的特征,并消除聚类过程中忽略数据分布情况和每个特征与类别都具有不同程度的重要性问题。同时解决聚类时的盲目性,使得文本分类结果具有更高的准确性和稳定性。
-
公开(公告)号:CN104820924A
公开(公告)日:2015-08-05
申请号:CN201510242186.6
申请日:2015-05-13
Applicant: 重庆邮电大学
CPC classification number: G06Q20/382 , G06K9/00416 , G06K2209/01
Abstract: 一种基于笔迹鉴定的网上安全支付系统,包括:101用户注册模块;102接收模块:用于接收用户输入的任一待笔迹签名样本,进行多特征融合,将多种属性特征值作为样本的特征值,挖掘各个属性值对正确识别本人签名贡献程度,降序排序,按照贡献值排序找一组最优权值融合多种特征;103学习、训练模块:将综合后的多特征集转化为1到8的数据后作为基于邻域超网络分类器的输入,进行训练和测试;104鉴定模块:用户输入签名,将待识别超边与所述超边库中的超边进行对比来鉴定用户笔迹的真伪;S105支付模块:将笔迹鉴定应用到网上安全支付。本发明具有更高的稳定性、安全性、便捷性;同时结合了多特征融合技术,能够提高签名样本的识别效率,以及准确性。
-
-
-
-
-
-
-
-
-