一种基于分类器链的汽车评论主题提取方法

    公开(公告)号:CN109783636A

    公开(公告)日:2019-05-21

    申请号:CN201811517941.7

    申请日:2018-12-12

    Abstract: 本发明请求保护一种基于分类器链的汽车评论主题提取方法,包括:101汽车评论文本数据预处理,对汽车论坛用户历史评论数据进行预处理操作;102评论文本向量化,使用加权TF-IDF方法对数据预处理后的每条文本进行向量化从而提取文本特征;103评论主题聚类划分,使用k-means算法对文本主题聚类划分,得到现有主题类别的一个划分;104局部多标签分类器链主题提取算法设计:将一条完整的分类器链转化为多条局部分类器链,同时每条局部分类器链采用距离类簇中心点由远到近的原则构建链,最后多条局部分类器链集成得到最终预测结果。本发明基于汽车论坛的用户历史评论数据,提取文本特征,设计改进的局部分类器算法,建立预测模型,从而预测每条评论属于哪些主题。

    一种光纤折射率大数据预测方法

    公开(公告)号:CN109711004B

    公开(公告)日:2023-03-28

    申请号:CN201811511344.3

    申请日:2018-12-11

    Abstract: 本发明请求保护一种光纤折射率大数据预测方法,包括:101对光纤拉制时的生产数据进行预处理;102根据光纤拉制设备的不同,划分训练集和验证集;103建立三个基础机器学习模型;104利用线性加权方法对基础模型进行融合;105根据最终建立的模型,对即将拉制的光纤的折射率进行回归预测。本发明主要是通过对光纤拉制时的生产数据进行预处理和分析,建立三个机器学习模型并进行模型融合,从而对即将被拉制的光纤的折射率进行回归预测分析,判断生产的光纤是否满足要求,同时也可以通过预测结果对现已有的参数进行调整,进而提高光纤生产的效率与合格率。

    一种基于大数据的物流供应链需求预测方法

    公开(公告)号:CN109740624B

    公开(公告)日:2022-12-27

    申请号:CN201811399639.6

    申请日:2018-11-22

    Abstract: 本发明请求保护一种基于大数据的物流供应链需求预测方法,包括:101对数据进行预处理操作;102对经过预处理的数据进行特征工程构建;103提取目标之间的关系特征;104提取输入输出空间的目标敏感特征;105建立机器学习模型,根据供应链的历史需求数据进行预测。本发明主要是通过提取关于物流供应链需求预测目标的输入输出空间的敏感特征来处理输入空间和输出空间的复杂关系,建立机器学习模型,从而预测供应链在未来5周内的需求,使得商家能够在正确的时间给用户最有效服务。

    一种基于分类器链的汽车评论主题提取方法

    公开(公告)号:CN109783636B

    公开(公告)日:2023-03-28

    申请号:CN201811517941.7

    申请日:2018-12-12

    Abstract: 本发明请求保护一种基于分类器链的汽车评论主题提取方法,包括:101汽车评论文本数据预处理,对汽车论坛用户历史评论数据进行预处理操作;102评论文本向量化,使用加权TF‑IDF方法对数据预处理后的每条文本进行向量化从而提取文本特征;103评论主题聚类划分,使用k‑means算法对文本主题聚类划分,得到现有主题类别的一个划分;104局部多标签分类器链主题提取算法设计:将一条完整的分类器链转化为多条局部分类器链,同时每条局部分类器链采用距离类簇中心点由远到近的原则构建链,最后多条局部分类器链集成得到最终预测结果。本发明基于汽车论坛的用户历史评论数据,提取文本特征,设计改进的局部分类器算法,建立预测模型,从而预测每条评论属于哪些主题。

    一种基于大数据的物流供应链需求预测方法

    公开(公告)号:CN109740624A

    公开(公告)日:2019-05-10

    申请号:CN201811399639.6

    申请日:2018-11-22

    Abstract: 本发明请求保护一种基于大数据的物流供应链需求预测方法,包括:101对数据进行预处理操作;102对经过预处理的数据进行特征工程构建;103提取目标之间的关系特征;104提取输入输出空间的目标敏感特征;105建立机器学习模型,根据供应链的历史需求数据进行预测。本发明主要是通过提取关于物流供应链需求预测目标的输入输出空间的敏感特征来处理输入空间和输出空间的复杂关系,建立机器学习模型,从而预测供应链在未来5周内的需求,使得商家能够在正确的时间给用户最有效服务。

    一种基于深度迁移学习的图片分类方法

    公开(公告)号:CN109523018B

    公开(公告)日:2022-10-18

    申请号:CN201910016242.2

    申请日:2019-01-08

    Abstract: 本发明请求保护一种基于深度迁移学习的图片分类方法,其中,所述的领域适应至少包含两个领域的数据,分别为源域和目标域,并且源域数据为已标记的样本数据.所述方法主要包括以下步骤:步骤1)数据准备阶段.准备源域数据和目标域数据,确定目标类别集合.步骤2)特征提取模型构建阶段.使用ResNet和自注意力网络构建基础特征提取模型.步骤3)领域对抗模型构建阶段.使用领域对抗模型预测样本类别和样本领域;步骤4)训练阶段.对源域和目标域样本进行领域标记,设置基于样本迁移权重的损失函数.步骤5)预测阶段.对目标域数据进行预测,将类别预测结果作为最终结果.本发明降低标记成本,达到知识迁移的目的。

    一种光纤折射率大数据预测方法

    公开(公告)号:CN109711004A

    公开(公告)日:2019-05-03

    申请号:CN201811511344.3

    申请日:2018-12-11

    Abstract: 本发明请求保护一种光纤折射率大数据预测方法,包括:101对光纤拉制时的生产数据进行预处理;102根据光纤拉制设备的不同,划分训练集和验证集;103建立三个基础机器学习模型;104利用线性加权方法对基础模型进行融合;105根据最终建立的模型,对即将拉制的光纤的折射率进行回归预测。本发明主要是通过对光纤拉制时的生产数据进行预处理和分析,建立三个机器学习模型并进行模型融合,从而对即将被拉制的光纤的折射率进行回归预测分析,判断生产的光纤是否满足要求,同时也可以通过预测结果对现已有的参数进行调整,进而提高光纤生产的效率与合格率。

    一种基于深度迁移学习的图片分类方法

    公开(公告)号:CN109523018A

    公开(公告)日:2019-03-26

    申请号:CN201910016242.2

    申请日:2019-01-08

    Abstract: 本发明请求保护一种基于深度迁移学习的图片分类方法,其中,所述的领域适应至少包含两个领域的数据,分别为源域和目标域,并且源域数据为已标记的样本数据.所述方法主要包括以下步骤:步骤1)数据准备阶段.准备源域数据和目标域数据,确定目标类别集合.步骤2)特征提取模型构建阶段.使用ResNet和自注意力网络构建基础特征提取模型.步骤3)领域对抗模型构建阶段.使用领域对抗模型预测样本类别和样本领域;步骤4)训练阶段.对源域和目标域样本进行领域标记,设置基于样本迁移权重的损失函数.步骤5)预测阶段.对目标域数据进行预测,将类别预测结果作为最终结果.本发明降低标记成本,达到知识迁移的目的。

Patent Agency Ranking