-
公开(公告)号:CN110879856A
公开(公告)日:2020-03-13
申请号:CN201911180128.X
申请日:2019-11-27
Applicant: 国家计算机网络与信息安全管理中心 , 中国科学院信息工程研究所
IPC: G06F16/901 , G06F16/906 , G06F16/909 , G06K9/62 , G06Q50/00
Abstract: 本发明公开了一种基于多特征融合的社交群体分类方法及系统。本方法为:1)对一目标社交群体的数据集,对该数据集中各用户的轨迹数据进行预处理,去除噪声并对缺失位置信息进行插值;2)使用频繁序列挖掘算法从各用户轨迹数据中挖掘对应用户的轨迹模式,再将用户的轨迹模式看作时序序列,采用LSTM对该时间序列进行编码,得到用户的轨迹编码;3)根据所述社交关系生成一图网络,将所述社交关系投影到低维空间,学习得到各用户的嵌入表示;4)将每一用户的轨迹编码和对应用户的嵌入表示结合输入softmax层,确定各用户的类别,实现对该目标社交群体的分类。本发明大大提升了群体分类的精度。
-
公开(公告)号:CN110610230A
公开(公告)日:2019-12-24
申请号:CN201910698120.6
申请日:2019-07-31
Applicant: 国家计算机网络与信息安全管理中心
Abstract: 本发明公开了一种台标检测方法、装置及可读存储介质,该方法包括如下步骤:获取台标数据集,并对所述台标数据集进行分组获得台标训练集;构建多损失融合的孪生神经网络,并基于所述台标训练集对所构建的多损失融合的孪生神经网络进行训练获得训练后的多损失融合的孪生神经网络;通过所述训练后的多损失融合的孪生神经网络对待测台标进行检测。本发明方法通过构建孪生神经网络框架,很好地消除了样本数量不足对训练网络带来的影响,可以更好地检测未知的新的种类的敏感台标。
-
公开(公告)号:CN109471932A
公开(公告)日:2019-03-15
申请号:CN201811415780.0
申请日:2018-11-26
Applicant: 国家计算机网络与信息安全管理中心
IPC: G06F16/332 , G06F16/35 , G06F17/27 , G06N3/08
Abstract: 本发明公开了一种基于学习模型的谣言检测方法、系统及存储介质,其中检测方法包括:构建新闻语料库;构建博文语料库;对新闻语料库中的数据进行模型训练,获得第一分类器模型;对博文语料库中的数据进行特征提取,获得训练特征,利用训练特征进行模型训练获得第二分类器模型;利用第一分类器模型和第二分类器模型对社交平台中的博文数据进行谣言检测。本发明通过对新闻数据中的谣言和非谣言数据进行采集构建新闻语料库,再进行模型训练获得第一训练模型;再对社交平台中的谣言和非谣言数据进行采集构建博文语料库,再进行模型训练获得第二训练模型,最后利用两个训练模型对社交平台中的数据进行谣言检测,使最终的检测结果更加准确可靠。
-
公开(公告)号:CN104361037B
公开(公告)日:2017-12-19
申请号:CN201410591807.7
申请日:2014-10-29
Applicant: 国家计算机网络与信息安全管理中心
Abstract: 本发明公开了一种微博分类方法及装置。该方法包括:步骤1,对训练语料集合进行预处理,对预处理后的训练语料进行分词,获取候选特征,并对候选特征进行权重计算,根据权重计算结果进行特征选择,获取最终的分类特征;步骤2,根据最终的分类特征,采用贝叶斯分类器进行模型训练,获取分类模型;步骤3,采用贝叶斯分类器根据分类模型对微博文档进行分类。借助于本发明的技术方案,提高了分类的召回率与准确率。
-
公开(公告)号:CN106201441A
公开(公告)日:2016-12-07
申请号:CN201610539099.1
申请日:2016-07-08
Applicant: 汉柏科技有限公司 , 国家计算机网络与信息安全管理中心
CPC classification number: G06F9/30 , G06F9/5027 , G06F9/5044 , G06F9/505
Abstract: 本发明实施例公开一种网络设备中CPU利用率的获取方法及装置。所述方法包括:获取在预设时间段内CPU执行完整的工作循环的循环次数,以及在所述循环次数内、在报文处理流程中未接收到报文的空转次数;获取所述非报文处理流程对应的第一权重值和所述报文处理流程对应的第二权重值;根据所述循环次数、所述空转次数、所述第一权重值和所述第二权重值,获取CPU利用率。所述装置用于执行所述方法。本发明实施例提供的方法,可准确地获取到网络设备中的CPU利用率。
-
公开(公告)号:CN105912716A
公开(公告)日:2016-08-31
申请号:CN201610285420.8
申请日:2016-04-29
Applicant: 国家计算机网络与信息安全管理中心
Abstract: 本发明公开了一种短文本分类方法及装置。该方法包括:对待分类的短文本进行分词预处理,并获取分词得到的每个词语的扩展词;根据预先构建的词项集获取每个词语及其扩展词的权重值;根据权重值,利用多个类别SVM分类模型获取短文本所属每个类别的概率;根据预设的概率分类模型确定短文本的所属类别。本发明所提供的短分本分类方法,克服了短文本特征稀疏的问题,有效降低采用多分类模型的复杂度,更符合实际应用。
-
公开(公告)号:CN114021627B
公开(公告)日:2025-04-22
申请号:CN202111239649.5
申请日:2021-10-25
Applicant: 国家计算机网络与信息安全管理中心 , 中国科学院信息工程研究所
IPC: G06F18/25 , G06F18/2411 , G06N3/0442 , G06N3/08
Abstract: 本发明公开了一种融合LSTM与场景规则知识的异常轨迹检测方法及装置,包括依据目标轨迹构建时序序列;将时序序列输入LSTM网络,获取的目标轨迹中每个时刻的位置隐向量,并基于各位置隐向量进行注意力机制计算,得到目标轨迹表示向量;拼接目标轨迹表示向量与设定场景规则的向量,并对拼接后向量进行分类,得到异常轨迹检测结果。本发明采用的融合方法除了使用向量表示轨迹之外,还加入了可调整的应用场景规则,解决单一方法的不足,具有更好的迁移性。
-
公开(公告)号:CN114626425B
公开(公告)日:2024-11-08
申请号:CN202011456860.8
申请日:2020-12-10
Applicant: 国家计算机网络与信息安全管理中心 , 中国科学院信息工程研究所
IPC: G06F18/22 , G06F40/30 , G06F40/284 , G06N3/0464 , G06N3/045 , G06N3/0442 , G06N3/084
Abstract: 本发明提供一种面向噪声文本的多视角交互匹配方法及电子装置,包括对两段待匹配噪声文本分别编码,得到两段编码向量序列,并向两段编码向量序列的每个编码向量中加入位置信息;对加入位置信息的两段编码向量序列进行内部交互,分别得到两段内部交互结果;对两段内部交互结果进行外部交互,分别构建两个双向的噪声文本交互矩阵;拼接两个噪声文本交互矩阵,判断两个待匹配噪声文本是否匹配。本发明采用注意力机制捕获噪声文本之间的双向匹配模式,受噪声文本中句子的逻辑顺序影响较小,增加文本有效语义单词影响,提高模型时间效率及噪声文本匹配效果,避免传递匹配问题。
-
公开(公告)号:CN118520929A
公开(公告)日:2024-08-20
申请号:CN202411003497.2
申请日:2024-07-25
Applicant: 国家计算机网络与信息安全管理中心
IPC: G06N3/09 , G06N3/0455 , G06F40/194
Abstract: 本发明提供一种文本相似度确定模型的训练方法及文本相似度计算方法,属于计算机技术领域,该训练方法包括:获取第一数据集和第二数据集;第一数据集中包括至少一个短文本数据对;第二数据集中包括至少一个目标文本数据对,目标文本数据对中的两个目标文本数据至少一个为长文本数据;基于句向量对比模型,获取第二数据集中各目标文本数据的关键表述;句向量对比模型是基于第一数据集和第一损失函数对第一预训练模型训练得到的;基于各关键表述和第二损失函数,对第二预训练模型进行训练,得到文本相似性确定模型。通过在判定过程中引入短文本和长文本,提升了文本相似度确定模型输出结果的准确性。
-
公开(公告)号:CN118277914A
公开(公告)日:2024-07-02
申请号:CN202311471891.4
申请日:2023-11-07
Applicant: 国家计算机网络与信息安全管理中心
IPC: G06F18/2431 , G06F18/24 , G06F18/213 , G06F18/22
Abstract: 本发明涉及APP分类分析技术领域,公开了一种基于动静结合多维度APK特征的移动应用分类方法,首先进行APP特征构建,基于主流手机应用商店、互联网小型分发平台、APP传播页面对APP的信息进行采集,具体通过APP所提供的功能或呈现的信息内容,识别APP的业务分类,采集通信类的信息,形成初始的测试数据集;再基于APP源码进行分析,获取APP的静态源码特征、动态流量和页面特征数据,具体包括名称、流量和内容信息;进行建立规则匹配模型和匹配机制,具体通过构建定时扫描程序,通过预设的各分类规则匹配模型进行识别和研判。本发明对具有显著技术特征或内容特征的APP具有较高的识别准确率,降低人工审核参与度。
-
-
-
-
-
-
-
-
-