-
公开(公告)号:CN104932865B
公开(公告)日:2017-10-10
申请号:CN201510405107.9
申请日:2015-07-10
Applicant: 武汉工程大学
Abstract: 本发明公开了一种组件协议挖掘方法、装置及系统,该方法包括:发送开始插桩指令至所述N个客户端,所述开始插桩指令中携带有需要挖掘的类的M个函数的函数标识,M为大于1的整数;接收所述N个客户端发送的所述M个函数的函数调用信息;所述函数调用信息是所述N个客户端基于所述开始插桩指令收集的信息;根据所述函数调用信息更新所述服务器中存储的所述类的组件协议。本发明提供的方法、装置及系统用以解决现有技术中的组件协议挖掘方法存在的人力耗费大和挖掘效率低的技术问题。实现了降低数据获取人力成本,提高组件协议挖掘效率的技术效果。
-
公开(公告)号:CN105677700A
公开(公告)日:2016-06-15
申请号:CN201510980148.0
申请日:2015-12-23
Applicant: 武汉工程大学
IPC: G06F17/30
CPC classification number: G06F17/3087
Abstract: 本发明公开了一种基于集合运算的中文地址行政区划解析方法,该方法包括以下步骤:首先利用行政区划字典和移动窗口最大匹配算法,从中文地址中提取所有可能的行政区划数据集,然后利用中文地址行政区划元素之间具有层次关系的特点,建立行政区划条件集合运算规则,最后对行政区划集合进行条件集合运算,得到信息量最完整最准确的中文地址的行政区划。本发明方法解决了在互联网中中文地址数据混乱无序的情况下快速解析出中文地址行政区划的问题,并能得到信息量最完整最准确的中文地址的行政区划解析结果。
-
公开(公告)号:CN105068789A
公开(公告)日:2015-11-18
申请号:CN201510404171.5
申请日:2015-07-10
Applicant: 武汉工程大学
IPC: G06F9/44
Abstract: 本发明公开了一种对象使用场景提取方法及装置,该方法包括:获取目标类的第一对象使用场景;所述第一对象使用场景为依第一顺序调用的N个函数的序列;根据目标类确定第一父类;第一父类为目标类的父类;从N个函数中确定出L个函数;L个函数均为第一父类的函数;N≥L>1;按照第一顺序排列L个函数,以生成第一父类的第二对象使用场景;第二对象使用场景为第一对象使用场景的继承子对象使用场景。本发明提供的方法及装置用以解决现有技术中进行组件协议挖掘时,存在的对象使用场景数量不足的技术问题。实现了可以通过运行少量应用程序来获得大量的对象使用场景的函数调用序列的技术效果。
-
公开(公告)号:CN104700078A
公开(公告)日:2015-06-10
申请号:CN201510081168.4
申请日:2015-02-13
Applicant: 武汉工程大学
Abstract: 本发明公开了一种基于尺度不变特征极限学习机的机器人场景识别算法,该方法包括以下步骤:首先,利用尺度不变特征表达机器人视觉图像的场景,其次使用K均值聚类算法实现机器人场景图像表达码本,最后利用极限学习机算法建立机器人视觉场景图像和场景标签之间的映射关系。本方法利用了极限学习机的优点,降低了传统神经网络的参数估计和优化的复杂度,进一步缩短了训练时间和提高了机器人场景图像的识别率。
-
公开(公告)号:CN104657718A
公开(公告)日:2015-05-27
申请号:CN201510078423.X
申请日:2015-02-13
Applicant: 武汉工程大学
Abstract: 本发明公开了一种基于人脸图像特征极限学习机的人脸识别方法,该方法包括以下步骤:对原始图像进行预处理;对样本进行主成分分析得到特征脸谱,将图像投影到特征域;然后利用极限学习机算法建立人脸图像和人脸标签之间的映射关系;最后利用极限学习机推导输入人脸图像的标签属性。本方法利用了极限学习机的优点,降低了传统神经网络的参数估计和优化的复杂度,进一步缩短了训练时间和提高了人脸图像的识别率。
-
公开(公告)号:CN104637060A
公开(公告)日:2015-05-20
申请号:CN201510078434.8
申请日:2015-02-13
Applicant: 武汉工程大学
CPC classification number: G06T5/002
Abstract: 本发明公开了一种基于邻域主成分分析-拉普拉斯的图像分割方法,该方法对原始图像进行主成分分析,得到每个像素的特征向量,提取图像的主要成分,有效的抑制了噪声;然后,用拉普拉斯算子对图像进行边缘检测,从而实现对图像的分割。与传统的Sobel算子和LOG算子分割算法相比,该方法通过对图像像素进行主成分分析,来估计去噪过程中的参数值,而不依赖于经验值,能有效的降低噪声对图像的干扰,简化了计算复杂度。实验结果表明,该方法能够有效的改善图像的分割效果,在准确性和稳健性上具有较强的优越性。
-
-
公开(公告)号:CN114648457B
公开(公告)日:2025-03-21
申请号:CN202210272822.X
申请日:2022-03-18
Applicant: 中铁大桥局集团有限公司 , 中铁大桥科学研究院有限公司 , 武汉工程大学
IPC: G06T5/92 , G06N3/0464 , G06N3/08 , G06T5/60
Abstract: 本发明提供一种图像增强方法、装置、设备及可读存储介质,图像增强方法包括:对每张低光照图像分别进行光照增强处理;以每张低光照图像和其对应的初步光照增强图像以及正常光照图像作为一个训练图像对;使用多个训练图像对交替训练增强生成器网络、降质生成器网络、增强判别器网络和降质判别器网络,得到训练好的增强生成器网络。通过本发明,将低光照图像进行初步光照增强,在增强生成器网络的基础上增加了降质生成器网络,将正常光照图像进行反向的降质学习训练,由于判别器和生成器之间的互斥,使得增强的图像和降质的图像都与对应的真实光照图像越来越相似,通过本发明,可以生成更高质量的正常光照图像。
-
公开(公告)号:CN114912741B
公开(公告)日:2025-03-11
申请号:CN202210294454.9
申请日:2022-03-23
Applicant: 武汉工程大学 , 武汉引行科技有限公司
IPC: G06Q10/0639 , G06Q50/26 , G06Q10/067 , G06F18/214
Abstract: 本发明提供一种作战体系结构效能评估方法、装置以及存储介质,属于仿真技术领域,方法包括:导入作战任务效能评估指标数据集,并对作战任务效能评估指标数据集进行数据集划分的分析,得到多个目标能力指标数据,并将所有的目标能力指标数据和作战任务效能评估指标数据集作为待处理数据集;对待处理数据集进行预测分析,得到作战体系结构效能评估结果。本发明能够使得训练速度和预测精度大大的提高,评估过程中无需人的参与,实现了效能自动化的评估,克服了评估过程中人为因素多,主观性强,耗时长以及成本高的缺点。
-
公开(公告)号:CN115017511B
公开(公告)日:2025-01-10
申请号:CN202210469716.0
申请日:2022-04-28
Applicant: 武汉工程大学 , 武汉引行科技有限公司
IPC: G06F21/57 , G06F21/56 , G06F18/214 , G06F8/41 , G06N3/042 , G06N3/0464 , G06N3/0442 , G06N3/084
Abstract: 本发明提供一种源代码漏洞检测方法、装置以及存储介质,属于代码检测技术领域,方法包括:S1:分别对各个原始源代码数据的数据预处理得到预处理后源代码数据;S2:按照预设比例对多个预处理后源代码数据的划分得到训练集,验证集和测试集;S3:对训练集的代码图编码得到多个代码图数据;S4:根据多个代码图数据、验证集和测试集对训练模型的模型分析得到检测模型;S5:通过检测模型对待检测源代码数据的检测分析得到检测结果。本发明实现了函数级的自动代码漏洞检测,能在源代码中快速、高效地完成代码漏洞检测任务,解决了代码静态分析工具进行漏洞检测上存在的误报率高、漏报率高的技术问题。
-
-
-
-
-
-
-
-
-