一种氮掺杂CoB合金的制备方法及其应用

    公开(公告)号:CN107170972B

    公开(公告)日:2020-08-28

    申请号:CN201710367563.8

    申请日:2017-05-23

    Abstract: 本发明公开了一种氮掺杂CoB合金,由硼氢化钠溶液在超声的条件下还原氯化钴、含氮碱性化合物的混合溶液后,再经洗涤、真空干燥制得,其比表面积为20~50 m2/g,颗粒直径的范围在300~600 nm之间。作为电池负极材料的应用时,电化学容量在100 mA/g的放电电流密度下,首次放电比容量值达500~1000mAh/g,100次循环后为300~500mAh/g,容量保持率为30~50%,极限扩散电流密度为1000~6000mA/g。其制备方法包括:步骤1将氯化钴和含氮碱性化合物溶于水得到混合溶液;步骤2配制硼氢化钠溶液,并以一定的速度滴加到步骤1的混合溶液中得到黑色悬浊液;步骤3将黑色悬浊液过滤,洗涤,干燥后值得。本发明具有均匀的颗粒分布,且电化学动力学性能优良,在二次电池、超级电容器等领域具有广阔的应用前景。

    一种Cu-Mo-S核壳结构纳米复合材料的制备方法和应用

    公开(公告)号:CN108565128B

    公开(公告)日:2020-06-05

    申请号:CN201810280475.9

    申请日:2018-04-02

    Abstract: 本发明公开了一种Cu‑Mo‑S核壳结构纳米复合材料,以Cu(NO3)2、Na2MoO4、(NH4)2S为起始原料,经水热反应一步法制得,其结构为核壳结构,其中CuS为核,MoS2为壳,其直径为30‑50 nm。其制备方法包括:1)原料的准备;2)溶液的配置;3)溶液的混合;4)水热法合成。作为超级电容器电极材料的应用,在0‑0.4V范围内充放电,在放电电流密度为1 A/g时,比电容可以达到2000‑2500 F/g。本发明采用水热法,工艺简单,使用化学试剂少,成本低;Cu‑Mo‑S核壳结构纳米复合材料表现出优良的电化学特性和化学稳定性,可用超级电容器的电极材料。

    一种Co-B/Ni-B非晶纳米球复合合金催化剂的制备方法及其应用

    公开(公告)号:CN105148918B

    公开(公告)日:2020-05-05

    申请号:CN201510387974.4

    申请日:2015-07-05

    Abstract: 本发明公开了一种Co‑B/Ni‑B非晶纳米球复合合金催化剂的制备方法及其应用。步骤如下:(1)将硫酸镍、柠檬酸钠加入到水溶液中;(2)将溶液进行超声;(3)称取NaBH4,加入水中;(4)将NaBH4水溶液加到步骤(2)的水溶液中;(5)称取氯化钴,加入水中;(6)将氯化钴水溶液加入步骤(4)的溶液中,继续超声;(7)称取NaBH4,加入水中;(8)将NaBH4溶液加到步骤(6)的水溶液中;(9)滴加完成后,再让溶液反应1小时,过滤、洗涤、干燥,得到Co‑B/Ni‑B非晶纳米球复合合金催化剂。本发明的催化剂纳米球复合结构,使其活性得到显著提高,提高了反应速率,而且制备工艺比较简单,制造成本低。

    一种Co-Bi-B催化铝/水制氢材料及其制备方法

    公开(公告)号:CN106622259B

    公开(公告)日:2019-02-22

    申请号:CN201611175543.2

    申请日:2016-12-15

    Abstract: 本发明提供一种Co‑Bi‑B催化铝/水反应的制氢材料及其制备方法,该材料由铝粉与Co‑Bi‑B混合机械球磨而成;其中,Co‑Bi‑B是由CoCl2.6H2O和BiCl3溶解于溶剂后,加入NaBH4,通过化学还原法制得。其制备方法包括:1)Co‑Bi‑B的制备与干燥;2)铝粉和Co‑Bi‑B的称量与准备;3)铝粉和Co‑Bi‑B的制备。本发明具有以下优点:1、在中性溶液和室温的条件下,产氢量能达到1196mL/g(复合材料),产氢率达到97.7%;2、Co‑Bi‑B对铝/水制氢材料催化活性高,避免了铝被氧化的现象;3、成本低廉,便于携带,能够随时制氢供氢。因此,本发明具有广阔的应用前景。

    一种蛋清基多孔结构碳材料及其制备方法和应用

    公开(公告)号:CN108622896A

    公开(公告)日:2018-10-09

    申请号:CN201810486402.5

    申请日:2018-05-21

    Abstract: 本发明公开了蛋清基多孔碳材料,由蛋清真空冷冻干燥后,经低温碳化,采用碱性无机物高温煅烧活化制备而成,比表面积其范围在2918~3921 m2 g−1,平均孔径分布均一,分布在1.32~3.596 nm范围内,且微孔含量超过85%。其制备方法包括步骤:1)蛋清的真空冷冻干燥;2)碳前驱体的活化;3)多孔碳材料的后处理。作为超级电容器电极材料的应用,当电流密度为0.5 A g−1时,比电容值范围在306~336 F g−1。本发明利用冷冻干燥技术,实现了提高其比表面积,调控孔径分布和微孔含量的目的。本发明在超级电容器、锂离子电池等领域具有广阔的应用前景。

    一种钛酸锰掺杂的氢化铝钠储氢材料的制备方法及应用

    公开(公告)号:CN108439331A

    公开(公告)日:2018-08-24

    申请号:CN201810524153.4

    申请日:2018-05-28

    Abstract: 本发明公开了一种改善氢化铝钠储氢性能的材料,该材料由氢化铝钠和钛酸锰机械球磨制得。其初始放氢温度为75℃左右,第二步放氢温度在160℃左右,主要放氢在140℃~225℃区间内完成;加热到225℃时该复合储氢材料放出5.1 wt%~5.4 wt%的氢气。其制备方法包括:1)钛酸锰的制备;2)钛酸锰粉体掺杂的氢化铝钠储氢材料的制备。本发明具有以下优点:1、经掺杂后的氢化铝钠具有较低的放氢温度;2、放氢量较大;3、放氢的速度快;4、原料成本低廉、合成方法及工艺简单、安全可靠。该材料在储氢材料领域具有一定的应用前景。

    一种锶掺杂含氮多孔碳材料及其制备方法和应用

    公开(公告)号:CN107546039A

    公开(公告)日:2018-01-05

    申请号:CN201710686777.1

    申请日:2017-08-11

    CPC classification number: Y02E60/13

    Abstract: 本发明公开了一种锶掺杂含氮多孔碳材料,由葡萄糖、氨基脲、含锶无机盐和还原剂,经水热反应和处理后,加入碱性无机物溶液煅烧活化和处理后制得,其比表面m2 积g范-1,围平在均20孔00径~2分48布5 在1.178-1.232 nm,且微孔含量超过92%。制备步骤包括:1)含锶前驱体的制备;2)含锶前驱体的活化;3)含锶前驱体的后处理。本发明材料作为超级电容器电极材料,在电流密度为0.5 A g-1时,比电容值范围在319~424 F g-1,具有良好的循环稳定性。本发明中锶的掺杂量大幅减少,同时提高了材料的比表面积,调控了孔径分布,有利于电子传输和电解液输运,并且提供赝电容;制备工艺简单,有利于实现批量生产,在超级电容器、燃料电池等领域具有良好的应用前景。

    一种膨胀石墨/LiBH<base:Sub>4</base:Sub>复合储氢材料及其制备方法

    公开(公告)号:CN104649224B

    公开(公告)日:2017-09-26

    申请号:CN201510063138.0

    申请日:2015-02-06

    Abstract: 本发明公开了一种膨胀石墨/LiBH4复合储氢材料及其制备方法,该复合材料以多孔膨胀石墨为支撑材料,LiBH4为储氢材料,通过多孔膨胀石墨的毛细吸附作用和真空浸渍技术将LiBH4的四氢呋喃溶液吸附入其中,经超声振荡、真空干燥等方法制备而成。本发明方法制备工艺简单,成本较低,可以有效的将LiBH4负载到膨胀石墨中,可以在短时间内得到具有较高产率的产物,制得的复合储氢材料具有良好的储氢性能。

    一种富氮掺杂多孔结构碳材料及其制备方法和应用

    公开(公告)号:CN106910893A

    公开(公告)日:2017-06-30

    申请号:CN201710169133.5

    申请日:2017-03-21

    CPC classification number: Y02E60/13 H01M4/587 H01G11/32 H01G11/36 H01M4/362

    Abstract: 本发明提供一种富氮掺杂多孔结构碳材料,由水溶性酚醛树脂、表面活性剂F127和鸟嘌呤混合,通过溶剂蒸发自组装法制备而成。其制备方法包括:(1)将表面活性剂F127与鸟嘌呤、水溶性酚醛树脂通过蒸发自组装过程得到含氮前驱体;(2)将含氮前驱体热解得到富氮掺杂改性的多孔碳材料;(3)将得到的多孔碳材料洗涤,过滤,烘干得到富氮掺杂多孔结构碳材料。本发明材料作为锂离子电池负极材料的应用,当电流密度为100 mA g‑1时,比容量值为607 mAh g‑1;作为超级电容器材料的应用,当电流密度为0.5 A g‑1时,比电容为218 F g‑1。本发明制备的碳材料具有大的比表面积,优良的电化学性能,制备工艺简单,易于大规模生产,在电化学等领域具有广阔的应用前景。

Patent Agency Ranking