预充放电LVDS驱动器
    61.
    发明授权

    公开(公告)号:CN101656476B

    公开(公告)日:2012-01-04

    申请号:CN200910035050.2

    申请日:2009-09-10

    Applicant: 东南大学

    Abstract: 本发明公开了模拟集成电路中的一种预充放电LVDS(低电压差分信号)驱动器。该驱动器的结构是在传统LVDS驱动器电路上增加由两个开关电流源和一个预充放电容组成的预充放电路,其中:两个开关电流源分别增加在传统驱动器桥接开关的两端,且受nD信号控制:nD为高电平时电流源开启,nD为低电平时电流源关闭;预充放电容跨接在桥接开关的两端,用做电荷预存储,以进一步提高边沿充放电速度。本发明的预充放电机制大大减小了负载寄生电容对电路工作速度的影响,同时所需的额外电流极少。

    一种低剖面双频双极化毫米波天线

    公开(公告)号:CN118783098A

    公开(公告)日:2024-10-15

    申请号:CN202410965623.6

    申请日:2024-07-18

    Abstract: 本发明公开了一种低剖面双频双极化毫米波天线,所述天线包括三层结构,其中,第一介质层(501)上面设有由四个中心对称布置的金属贴片(101)组成的电偶极子天线(10),第一长方形金属条带(301)连接第一金属通孔(302)组成的第一“Г”型馈电结构(30);第二介质层(502)上面设有四个中心对称布置的切角贴片(202)、穿过第二介质层(502)的第二过孔(203),第二长方形金属条带(401)连接第二金属通孔(402)组成的第二“Г”型馈电结构(40);最下层为参考地(601)。该天线具有低剖面、双频双极化、宽带化等特点,适用于26、39、47和60GHz等5G毫米波频段及未来无线通信系统,具有广泛的应用前景。

    一种双频双极化毫米波电磁偶极子天线

    公开(公告)号:CN118630464A

    公开(公告)日:2024-09-10

    申请号:CN202410856923.0

    申请日:2024-06-28

    Applicant: 东南大学

    Abstract: 本发明公开了一种双频双极化毫米波电磁偶极子天线。该天线设有五层结构,从上至下顺序排列为第一介质层、第二介质层、第三介质层、第四介质层和天线参考地;所述天线由位于第一介质层上表面的四个中心对称布置的金属贴片、四组折叠结构、两个正交摆放的“Г”形探针馈电结构以及位于顶层金属贴片下方的四组短路金属柱组成;两个“Г”形探针馈电结构的水平枝节呈正交排布,分别设置在不同的介质层上方,可提高极化隔离度。在所述顶层贴片下方加载的短路柱结构,引入了一个低频谐振,使得天线可以双频工作。本发明的天线设计旨在提供一种结构紧凑、性能卓越的双频双极化解决方案,适用于高速、高密度无线通信网络。

    一种基于反向NMOS变容管的线性化电路

    公开(公告)号:CN118611602A

    公开(公告)日:2024-09-06

    申请号:CN202410766175.7

    申请日:2024-06-14

    Applicant: 东南大学

    Abstract: 本发明公开了一种基于反向NMOS变容管的线性化电路,该线性化电路为一对反向的NMOS变容管和中间节点并联第一电感(L1)构成的T形网络,该反向NMOS变容管对的漏极和源极连接到放大器差分输入端(IN+、IN‑),栅极通过第一电阻(R1)连接到控制电压(Vctr)。在差模下,该线性化电路作为反向NMOS变容器对,变容管电容变化方向与功率放大器中非线性输入电容变化方向相反,有效地补偿了功率放大器的非线性输入电容的影响;在共模下,该线性化电路作为“电容‑电感‑电容”型的二次谐波陷波网络,有效抑制二次谐波。因此,通过采用基于反向NMOS变容管的线性化电路可以同时补偿放大器输入端的非线性输入电容和抑制二次谐波反馈,从而有效的减轻宽带内的幅度‑相位(AM‑PM)失真,提高功率放大器的线性度。

    一种基于片上变压器的频率路径可切换匹配器

    公开(公告)号:CN118573140A

    公开(公告)日:2024-08-30

    申请号:CN202410766183.1

    申请日:2024-06-14

    Applicant: 东南大学

    Abstract: 本发明公开了一种基于片上变压器的频率路径可切换匹配器,由低频路径输入端、低频路径输入开关、低频路径输入并联电容、低频路径变压器初级线圈依次并联连接,低频路径变压器次级线圈两端与输出并联电容两端连接;高频路径输入端、高频路径输入开关、高频路径输入并联电容、高频路径变压器初级线圈依次并联连接,高频路径变压器次级线圈两端与输出并联电容两端连接;输出并联电容两端和输出端并联连接;本发明实现低频或高频路径射频信号输入时该路径宽带阻抗匹配,并利用网络呈现出的对另一路径干扰信号的陷波特性,实现对干扰信号的抑制,提升多频段射频收发机信噪比及系统频率可配置性。

    一种探测和读出分离的自校正温度传感器

    公开(公告)号:CN116222823A

    公开(公告)日:2023-06-06

    申请号:CN202310241631.1

    申请日:2023-03-14

    Applicant: 东南大学

    Abstract: 本发明公开一种探测和读出分离的自校正温度传感器,特别适用于快速响应多点测温应用。温度传感器包含时钟产生电路、电流镜电路、感温核心电路、电压缓冲器、模数转换器以及相应的数字校正电路。其中时钟产生电路需要为其它部分提供相应时钟,电流产生电路为感温核心电路提供电流偏置,感温核心电路为电流产生电路提供电压偏置,感温核心电路将当前结温转换为电压信号,该信号经过一级电压缓冲器后送入模数转换器,输出的数字信号在经过数字校正后得到温度码。在优选实施例中,该电路配合相应的校正方法,在转换率达到1MSPS的情况下,‑40℃~140℃的温度范围内,实现经过单点校正后±5℃的温度测量精度。

    一种恒定跨导偏置电路
    67.
    发明公开

    公开(公告)号:CN113359932A

    公开(公告)日:2021-09-07

    申请号:CN202110685209.6

    申请日:2021-06-21

    Applicant: 东南大学

    Abstract: 本发明公开了一种恒定跨导偏置电路,其中包括PTAT电路、恒流源产生电路、电流镜电路、工艺角调整电路和跨导放大器电路。恒流源产生电路的作用是为工艺角调整电路提供一个稳定的电流。电流镜电路的作用是将恒流源电路产生的电流拷贝到工艺角调整电路中去。工艺角调整电路的作用是调节PTAT电路里的线性区MOS管电阻的栅极电压,从而改变其阻值,引起电流的变化,抵消跨导公式里的工艺因子因为工艺角发生变化而引起的变化。跨导放大器电路接收经过工艺调整和温度补偿后的偏置电流,通过PTAT电流产生电路及工艺角调整电路的共同作用,该跨导放大器的跨导值可达到恒定。

    一种高增益低副瓣的毫米波封装天线

    公开(公告)号:CN109066053A

    公开(公告)日:2018-12-21

    申请号:CN201810762013.0

    申请日:2018-07-12

    Applicant: 东南大学

    CPC classification number: H01Q1/2283 H01Q1/36

    Abstract: 本发明公开了一种高增益低副瓣的毫米波封装天线,包括引线框架,引线框架上设有毫米波IC芯片和毫米波天线,毫米波IC芯片与毫米波天线之间实现高频互连,还包括封装罩,封装罩将毫米波IC芯片与毫米波天线密封在引线框架内,毫米波天线包括辐射单元,封装罩上对应毫米波天线辐射单元的位置处设有喇叭状凹槽,喇叭状凹槽的槽壁表面被金属覆盖。本发明通过在封装罩上设计喇叭状凹槽,能够有效提升天线的增益,降低天线的副瓣电平,并且不影响回波损耗性能,从而能够实现小型化、低成本和高性能的毫米波封装天线。

    一种低电压高速采样保持电路

    公开(公告)号:CN104539292B

    公开(公告)日:2017-10-20

    申请号:CN201510014035.5

    申请日:2015-01-12

    Applicant: 东南大学

    Inventor: 黎飞 李连鸣 王尧

    Abstract: 本发明公开了一种低电压高速采样保持电路,该采样保持电路包含差分信号输入缓冲电路、栅压自举开关、采样电容、差分信号输出缓冲电路。栅压自举开关利用单相时钟完成对差分开关的控制。利用信号输入和输出缓冲电路完成电路内部共模电平调整作用,有效改善低电源电压下高速模数转换器内单元电路间的信号电平匹配问题。利用栅压自举开关电路,有效提升高速采样保持电路的线性特性。利用输出缓冲电路实现对输入信号的隔离,后续电路只需要在规定的时间内完成信号的量化即可满足电路工作要求,有效降低电路设计难度,提升电路的工作速度。

    一种高增益高功率的毫米波功率放大器

    公开(公告)号:CN103095230A

    公开(公告)日:2013-05-08

    申请号:CN201210591483.8

    申请日:2012-12-31

    Applicant: 东南大学

    Abstract: 本发明公开了一种高增益高功率的毫米波功率放大器,包括四路三级伪差分放大器;伪差分放大器采用电容中和技术;输入输出电路采用2:4的变压器完成功率分配和功率合成,放大器级与级之间采用变压器、传输线和并联电感进行阻抗匹配。本发明利用电容中和技术,提高电路的稳定性和增益。本发明通过在普通传输线加变压器的匹配网络中增加一个并联电感,能够降低级间匹配网络的损耗。本发明利用2:4的变压器能够实现四路功率合成和阻抗匹配,极大的提高了输出功率,同时减少了面积。

Patent Agency Ranking