-
公开(公告)号:CN114999654A
公开(公告)日:2022-09-02
申请号:CN202210750831.5
申请日:2022-06-28
Applicant: 神州医疗科技股份有限公司
Abstract: 本申请提供了一种基于知识图谱的糖尿病风险预测方法、装置、设备及介质,其中,该方法包括:使用待预测对象的第一病历数据对糖尿病知识图谱进行更新得到目标知识图谱;根据目标知识图谱中待预测年份节点的周围节点的第一节点向量,确定待预测年份节点的第二节点向量;根据第二节点向量和目标节点与待预测年份节点之间的第一关联关系向量得到第一拼接向量;目标节点为患病节点和/或未患病节点;第一关联关系向量是根据待预测年份节点与周围节点之间的第二关联关系向量确定的;将第一拼接向量和目标节点向量输入到糖尿病风险预测模型中输出第一余弦相似度;根据第一余弦相似度确定糖尿病的患病概率。通过该方法提高了糖尿病风险预测的准确性。
-
公开(公告)号:CN114925212A
公开(公告)日:2022-08-19
申请号:CN202210485506.0
申请日:2022-05-06
Applicant: 神州医疗科技股份有限公司
IPC: G06F16/36 , G06F16/335 , G06F16/35 , G06F16/951 , G06F40/205 , G06F40/295 , G16H10/60
Abstract: 本发明公开了一种自动判断并融合知识图谱的关系抽取方法及系统,在医学范围内预先建立了小范围的原始数据库,基于此原始数据库并结合医学知识图谱充分获取了待分类的实体的更多特征信息,如实体、句子、属性节点以及上下文信息,提高了模型可获得的信息量,提高关系分类任务的准确率,对不同类型的实体数据进行数据增强和调整超参数,进一步提高了关系分类抽取的准确率;将实体、句子、属性节点以及上下文信息等特征信息融合到关系抽取的任务中并结合注意力机制的计算方式对相关性属性节点进行了筛选,从而能根据节点的关键信息以及当前任务的重要程度做出筛选,考虑到不同语境下的节点所代表的含义,优化了目前构建医学术语集的准确性。
-
公开(公告)号:CN113393475A
公开(公告)日:2021-09-14
申请号:CN202110734983.1
申请日:2021-06-30
Applicant: 神州医疗科技股份有限公司
Abstract: 本申请实施例提供一种乳腺钼靶图像分割的装置、电子设备、医疗设备和介质,该电子设备包括存储器和处理器,所述存储器被配置为存储计算机程序,其中,所述处理器通过执行所述程序以实现如下乳腺钼靶图像分割的方法:获取乳腺钼靶图像;根据所述乳腺钼靶图像上非零像素的平均值确定目标分割线;根据所述目标分割线从所述乳腺钼靶图像上获取乳腺区域;基于所述乳腺区域进行数据分析,能够高效准确的从乳腺钼靶图像中获取乳腺区域,从而降低病灶检测过程中的噪音干扰(例如:在病灶检测过程中由胸大肌区域带来的噪音干扰),提升后续数据分析的准确率。
-
公开(公告)号:CN120032877A
公开(公告)日:2025-05-23
申请号:CN202510015011.5
申请日:2025-01-06
Applicant: 神州医疗科技股份有限公司
Abstract: 本发明涉及机器学习技术领域,具体公开一种术后心力衰竭风险预测方法、系统、电子设备和存储介质,该方法包括:确定用于术后心力衰竭风险预测的目标机器学习模型与多个目标特征指标,并根据每个样本患者的多个目标特征指标的具体值以及表征每个样本患者是否存在术后心力衰竭的样本标签,对所述目标机器学习模型进行训练,得到训练好的机器学习模型;将待测患者的多个目标特征指标的具体值输入至所述训练好的机器学习模型,得到所述待测患者的术后心力衰竭风险预测结果。本发明能够简化临床工作流程,提高术后心力衰竭风险评估的准确性和效率,最终实现更好的患者监测以及护理。
-
公开(公告)号:CN119904618A
公开(公告)日:2025-04-29
申请号:CN202411986034.2
申请日:2024-12-31
Applicant: 神州医疗科技股份有限公司
IPC: G06V10/25 , G06V10/26 , G06V10/28 , G06V10/62 , G06V10/74 , G06V10/764 , G06V10/82 , G06V20/62 , G06V20/54 , G08G1/017 , G06N3/0464 , G06N3/0442 , G06N3/045
Abstract: 本发明公开了一种图像识别方法、系统、电子设备和存储介质,涉及图像识别技术领域,方法包括:利用目标识别模型对预设图像进行识别;当从预设图像中识别出期望目标时,利用状态识别模型对期望目标所在的局部图像进行识别,确定期望目标的状态。本发明中,目标识别模型和状态识别模型更具有针对性,通过对期望目标和期望目标的状态进行分步识别,能更精识别期望目标和期望目标的状态,用户根据期望目标和期望目标的状态,能更精准的进行决策。
-
公开(公告)号:CN119903834A
公开(公告)日:2025-04-29
申请号:CN202411887946.4
申请日:2024-12-20
Applicant: 神州医疗科技股份有限公司
IPC: G06F40/258 , G06F18/22 , G06F16/38
Abstract: 本发明公开了一种大模型检索增强生成的自适应切片的文档切分方法,涉及大模型检索增强生成技术领域,方法包括:获取待切分文档,并对所述待切分文档按照标题类型进行切分,得到至少一组原始切块;根据任一原始切块对应的信息密度以及主题变化度,计算该原始切块的最优切分数量;根据所述最优切分数量对该原始切块进行切分处理。本发明先将文档按照层次标题进行切分,然后计算层次标题下的信息密度和主题变化度,以层级标题为单位,自动计算该层级标题下的最优切分大小,来指导文档的自适应切分,以提高后续检索和生成任务的效果。
-
公开(公告)号:CN119888401A
公开(公告)日:2025-04-25
申请号:CN202411912230.5
申请日:2024-12-24
Applicant: 神州医疗科技股份有限公司
IPC: G06V10/774 , G06N5/04 , G06V10/80 , G06V10/82 , G06N3/0464
Abstract: 本发明公开了基于融合注意力与动态卷积的机械图片数据集生成方法,涉及大模型技术领域,方法包括:获取至少一张待识别机械图像,将所有待识别机械图像输入至大模型处理模块,生成每张待识别机械图像对应的机械类型以及标注信息;将所述机械类型、所述标注信息以及对应的待识别机械图像进行关联,生成一组数据信息,将所有组数据信息进行整合生成机械图片数据集;所述大模型处理模块包括多模态融合层、动态注意力机制层以及融合注意力与动态卷积的时空增强网络模块。本发明能够通过大模型处理模块可以自动从原始机械图像中提取、整理并标注出机械图片数据集,提高数据集生成的效率和准确性。
-
公开(公告)号:CN119884817A
公开(公告)日:2025-04-25
申请号:CN202411912711.6
申请日:2024-12-24
Applicant: 神州医疗科技股份有限公司
Abstract: 本发明涉及基于多模态学习的目标分类方法、装置、设备及介质,该方法包括:将待处理数据输入至预训练的分类模型中,得到待处理数据对应的分类结果;分类模型包括输入层用于接收待处理数据,深度可分离卷积层用于对每种数据进行逐通道卷积,得到每种数据对应的第一特征图,对每种数据对应的第一特征图进行逐点卷积,得到每种数据对应的第二特征图,基于每种数据对应的第一特征图和第二特征图,得到每种数据对应的第三特征图;多尺度特征融合层用于对所有数据对应的第三特征图进行融合处理得到融合特征图;输出层用于根据融合特征图得到分类结果。通过本发明的方法,可减少计算量并保持精度,从而可使得基于分类模型得到的分类结果更加准确。
-
公开(公告)号:CN119760080A
公开(公告)日:2025-04-04
申请号:CN202411870255.3
申请日:2024-12-18
Applicant: 神州医疗科技股份有限公司
IPC: G06F16/3329 , G06N3/045
Abstract: 本发明公开了一种大模型检索增强生成中的RAG必要性判断方法,涉及大模型检索增强生成技术领域,方法包括:获取用户在社交网站或社交媒体评论区或对话日志中提出的当前问题信息;针对所述当前问题信息,确定所述用户对应的事实倾向性分数;根据所述事实倾向性分数与预设倾向性分数之差,确定是否需要调用RAG对当前问题信息进行辅助回答。本发明通过对当前问题信息进行事实倾向性分数的计算可以有效的识别当前问题信息是否需要利用RAG的方式引用外部知识,通过判断RAG必要性来减少不必要的资源浪费,提升推理速度并避免因为RAG引入的知识而增加模型的混乱。
-
公开(公告)号:CN119694481A
公开(公告)日:2025-03-25
申请号:CN202510199029.5
申请日:2025-02-24
Applicant: 神州医疗科技股份有限公司
IPC: G16H15/00 , G16H50/30 , G16H50/70 , G06F18/214 , G06F18/241
Abstract: 本发明涉及医疗数据隐私保护和信息安全技术领域,特别涉及一种基于知识库的肥胖风险预测报告生成系统及方法,该系统包括数据采集模块、风险预测模型模块、知识库模块和报告生成模块。本发明通过对用户的肠道微生物、基因检测、饮食习惯和生活方式等多维度数据进行分析,利用知识库和机器学习模型相结合技术,能够生成个性化的肥胖风险评估报告,从而实现多维度且精确的肥胖风险评估。
-
-
-
-
-
-
-
-
-