-
公开(公告)号:CN106094102A
公开(公告)日:2016-11-09
申请号:CN201610388383.3
申请日:2016-06-03
Applicant: 烽火通信科技股份有限公司
CPC classification number: G02B6/024 , G02B6/02314
Abstract: 本发明公开了一种环境不敏感保偏光纤,包括石英层及包裹于石英层中心的芯区,所述石英层内部环绕所述芯区的外侧设有多个微孔或纳米孔。本发明通过在常规保偏光纤的石英包层外侧设计了微孔或纳米孔,即在保偏光纤的外侧石英包层区构筑起一道缓冲层,在与现有系统兼容的同时可较好抵御外界环境带来的影响,从而更好的发挥保偏光纤本身的性能。
-
公开(公告)号:CN105842779A
公开(公告)日:2016-08-10
申请号:CN201610392053.1
申请日:2016-06-03
Applicant: 烽火通信科技股份有限公司
Abstract: 本发明公开了一种掺铒光子晶体光纤,涉及光子晶体光纤领域。该掺铒光子晶体光纤包括由内至外依次排列的石英纤芯、开有若干个空气孔的空气孔层、石英外包层、涂层,空气孔均沿光纤轴向分布并贯穿于整根光纤,空气孔排列形成多层环圈,环圈的层数至少为5层,每层环圈中的空气孔大小均相同,每层环圈中的空气孔均以石英纤芯为中心,呈正六边形排列,每层环圈中的空气孔的数量=环圈层数*6;石英纤芯包括掺杂芯层,掺杂芯层掺有铒离子、镨离子。该掺铒光子晶体光纤具有优良的抗辐照性能,能够满足航天用光纤陀螺的荧光光源、复杂环境的掺铒光纤放大器EDFA等特殊环境下的应用需求。
-
公开(公告)号:CN105589128A
公开(公告)日:2016-05-18
申请号:CN201610135509.6
申请日:2016-03-10
Applicant: 烽火通信科技股份有限公司
IPC: G02B6/02
CPC classification number: G02B6/02347 , G02B6/02342 , G02B6/02366
Abstract: 本发明公开了一种高非线性光子晶体光纤,涉及光子晶体波导结构领域,所述微孔区内设置沿光纤轴向分布且贯穿整根光纤的空气孔;若干所述空气孔以纤芯轴心为中心,环绕于所述纤芯周围设置至少六层环圈,从内到外依次为第一层环圈、第二层环圈、第三层环圈、第四层环圈、第五层环圈和第六层环圈,且每层环圈的截面呈正六边形,每层环圈分别由若干空气孔排列组成,所述第一层环圈至所述第六层环圈的空气孔的孔内径依次为D1、D2、D3、D4、D5、D6,且D1<D3=D5<D2=D4=D6。本发明具有一定的色散平坦特性,在一定范围内形成良好的非线性传输,为高非线性的应用提供更好的支撑。
-
公开(公告)号:CN105445852A
公开(公告)日:2016-03-30
申请号:CN201610011288.1
申请日:2016-01-08
Applicant: 烽火通信科技股份有限公司
IPC: G02B6/02
CPC classification number: G02B6/02228 , G02B6/02366 , G02B6/02395
Abstract: 本发明公开了一种零色散位移光子晶体光纤,涉及光子晶体光纤领域。该光纤包括石英纤芯、环绕在石英纤芯周围的多层空气孔环圈结构、包覆在多层空气孔环圈结构外的石英包层,石英纤芯的直径为3.2~5.0μm;多层空气孔环圈结构中的空气孔数量=环圈层数*6,所有空气孔的内径均相同,每个空气孔的内径为2.0~4.0μm,相邻的空气孔之间的间距为0.5~1.5μm,每层环圈的空气孔呈正六边形排列;石英包层的直径为110~175μm。该光纤能够用于研制具有高性能的参量放大器和参量振荡器,实现良好的1微米波段特殊非线性应用效果,得到用于生物成像和光谱分析的非传统波段高功率激光。
-
公开(公告)号:CN103214181B
公开(公告)日:2015-09-16
申请号:CN201310136566.2
申请日:2013-04-18
Applicant: 烽火通信科技股份有限公司
IPC: C03B37/025
Abstract: 本发明公开了一种高速拉制光纤的装置及方法,涉及光纤通信领域。方法包括:预热机构对套有石英套环的光纤预制棒进行预热;熔融机构对光纤预制棒进行熔融拉丝,形成光纤;退火机构对光纤进行退火;第一涂覆器对光纤进行涂覆,第一涂层固化炉对涂覆层进行固化,第一冷却管对光纤进行除杂,第二涂覆器对光纤进行涂覆,第二涂层固化炉对涂覆层进行固化,第二冷却管对光纤进行除杂;稳定导轮对光纤进行轨迹校正,牵引轮对光纤进行牵引拉制,收丝筒对光纤进行收丝。本发明拉制光纤的速度能够达到2500m/min,还能控制光纤直径的精度,光纤各部分直径的变化差异较小,光纤的翘曲度比较稳定,能够保证光纤的涂覆质量和光纤自身的质量。
-
公开(公告)号:CN103113021B
公开(公告)日:2014-12-31
申请号:CN201310011213.X
申请日:2013-01-11
Applicant: 烽火通信科技股份有限公司
IPC: C03B37/10
CPC classification number: C03B37/032 , C03B2203/19 , C03B2205/06
Abstract: 本发明公开了一种搓扭角度可调的光纤搓扭设备及光纤搓扭方法,涉及光纤领域,该光纤搓扭设备包括第一搓扭轮、第二搓扭轮、第一传动机构、第二传动机构、第一旋转电机、第二旋转电机、导线、智能控制器,第一搓扭轮通过第一传动机构与第一旋转电机相连,第二搓扭轮通过第二传动机构与第二旋转电机相连,第一旋转电机、第二旋转电机均通过导线与智能控制器相连,第一传动机构、第二传动机构对称分布,第一旋转电机、第二旋转电机的旋转方向相反。本发明能实现任意角度的搓扭及对光纤的不同搓扭圈数,快速切换搓扭方向,拉制的光纤的PMD稳定控制在0.2ps/km1/2以下。
-
公开(公告)号:CN102730960B
公开(公告)日:2014-12-03
申请号:CN201210188966.3
申请日:2012-06-11
Applicant: 烽火通信科技股份有限公司
IPC: C03B37/018
CPC classification number: C03B37/0122
Abstract: 本发明公开了一种多孔光纤预制棒的制造方法,涉及新材料领域,该方法包括步骤:采用常规通信光纤制备方法制备出芯棒,芯棒包含掺锗的石英芯层和位于芯层外围的纯硅石英包层,二者为同心圆;根据多孔型弯曲不敏感光纤的设计要求,在芯棒外边沿等角度开一定数量的弧形槽,将有弧形槽的芯棒用酸液浸泡去除杂质,并用去离子水洗净,烘干;在开有弧形槽的芯棒外套上石英套管;在各弧形槽中塞入毛细管,形成所需的微孔,制备出多孔光纤预制棒。本发明能实现多孔光纤制造过程中微孔的精确定位,改善多孔型光纤的偏振模特性和弯曲损耗特性;能减少多孔光纤预制棒制造过程中杂质的污染,改善多孔型光纤的衰减特性。
-
公开(公告)号:CN102508335B
公开(公告)日:2014-08-06
申请号:CN201110355495.6
申请日:2011-11-11
Applicant: 烽火通信科技股份有限公司
Abstract: 本发明公开了一种光锥型高功率耦合器及其制造方法,方法包括步骤:将光纤预制棒部分拉制成能量光纤后,将余棒放置到熔融拉锥机上,根据预先设定的圆台形光锥的输入端面的直径进行拉制;设定与所述能量光纤相匹配的耦合端面的直径、及光锥的输入端面与耦合端面之间的距离,通过熔融拉锥机进行拉锥;将光锥的耦合端面与能量光纤熔接为一体;将光锥固定在金属护套中。本发明结构简单,便于操作,体积较小,便于携带,能根据实际情况灵活调节尺寸,能实现高能激光与能量光纤的高效率和高可靠耦合,能有效提高高能激光的耦合能量。
-
公开(公告)号:CN102354019B
公开(公告)日:2013-07-31
申请号:CN201110355519.8
申请日:2011-11-11
Applicant: 烽火通信科技股份有限公司
IPC: G02B6/02
Abstract: 本发明公开了一种弯曲不敏感微结构光纤及其制造方法,弯曲不敏感微结构光纤包括掺锗的纤芯和覆盖在纤芯外围的石英包层,纤芯周围均匀分布有12个空气孔。方法包括步骤:利用制棒设备制备掺锗的纤芯;将12根石英管沿纤芯外围的圆周方向均匀排列,12根石英管的尾端固定,形成聚束的纤芯加石英管结合的一体棒;在一体棒的外围套上石英套管,形成弯曲不敏感微结构光纤预制棒;利用光纤拉丝塔,将弯曲不敏感微结构光纤预制棒拉制成弯曲不敏感微结构光纤。本发明能够有效克服实际制造过程中微孔不对称性带来的弯曲损耗效果不佳的问题,并且能提供更好的小弯曲半径低损耗特性。
-
公开(公告)号:CN102225843B
公开(公告)日:2013-07-31
申请号:CN201110123043.5
申请日:2011-05-13
Applicant: 烽火通信科技股份有限公司
IPC: C03B37/014
CPC classification number: C03B37/01211 , C03B2201/12 , C03B2203/24
Abstract: 一种光纤预制棒的制造方法,包括:(1)采用轴向气相沉积VAD工艺制备光纤芯棒;(2)采用等离子化学气相沉积PCVD工艺制备掺氟下陷包层,与(1)中制备的光纤芯棒熔缩成光纤芯棒预制件;(3)采用外部气相沉积OVD工艺制备光纤芯棒预制件的外包层,最终烧结成透明的光纤预制棒;所述光纤芯棒包含包层,光纤芯棒的包层直径与光纤芯棒的芯直径二者比值在3.2~4.6之间;所述掺氟下陷包层起始位置的直径与所述芯直径的比值在3.2~4.6之间,所述掺氟下陷包层的宽度与芯直径的比值在0.24~0.49之间。本方法解决了单模光纤高效规模化生产的关键技术,大幅度提高弯曲不敏感单模光纤预制棒的制造效率,降低生产成本。
-
-
-
-
-
-
-
-
-