一种基于联邦学习模型的训练方法

    公开(公告)号:CN117035058A

    公开(公告)日:2023-11-10

    申请号:CN202310971765.9

    申请日:2023-08-03

    Abstract: 本发明属于联邦学习领域,提供了一种基于联邦学习模型的训练方法,包括以下步骤:S11,定义问题:确定需要解决的机器学习问题、本地数据的来源、以及参与联邦学习的设备或节点;S12,模型选择和初始化:选择相应的模型,并在所有的本地设备或节点上初始化相应的模型,并下发至所有用户端;S13,本地训练:每个本地设备或节点使用其本地数据集对初始化的模型进行训练,得到一个本地模型;S14,模型聚合:在中央服务器上聚合本地模型;本发明通过在每个本地设备或节点都可以进行本地模型的训练和更新,进一步分散计算负载,提高训练速度和效率;通过设定停止条件来控制模型更新的频率,进而避免过度拟合等问题。

    一种基于诈骗短信的诈骗团伙识别系统及识别方法

    公开(公告)号:CN110248322B

    公开(公告)日:2021-10-22

    申请号:CN201910572375.8

    申请日:2019-06-28

    Abstract: 本发明涉及一种基于诈骗短信的诈骗团伙识别方法及识别系统,该识别方法包括:实时识别并提取诈骗短信的敏感信息;对该诈骗短信进行通联关系分析,获取预定时间范围内所有相关通讯数据;从所有相关通讯数据中分别提取与敏感信息有关联的主叫信息和被叫信息,并提取与主叫号码相似度超过阈值的主叫信息;根据所有主叫信息获取诈骗团伙的诈骗地区、诈骗时间、团伙成员、团伙剧本。本发明提取诈骗短信的敏感信息,并获取与诈骗短信同一主叫的有关语音信息进行分析,从而获取以多种方式向被叫信息发送敏感信息的所有主叫信息和主叫语音,对所有主叫信息进行整体分析,以获取诈骗团伙的诈骗地区、诈骗时间、团伙成员等,实现诈骗团伙识别的自动化。

Patent Agency Ranking