-
公开(公告)号:CN113343672A
公开(公告)日:2021-09-03
申请号:CN202110685974.8
申请日:2021-06-21
Applicant: 哈尔滨工业大学
IPC: G06F40/242 , G06F40/284
Abstract: 一种基于语料合并的无监督双语词典构建方法,属于无监督双语词典构建领域。本方法步骤为:一、根据单语语料训练得到对应的单语词向量;二、根据单语词向量得到映射矩阵W;三、根据映射矩阵W抽取替换单词的词典;四、根据替换词典替换原来单语语料并且合并单语语料为混合语料;五、训练混合语料得到混合词向量;六、分离混合词向量得到新的源语言与目标语言词向量;七、基于新的词向量重新计算映射矩阵并据此构建词典。本发明应用于低资源语言无监督双语词典构建领域。本发明解决了低资源语言平行语料库匮乏导致的双语词典构建代价过高的问题,以及提高基于无监督双语构建的词典的性能的问题。
-
公开(公告)号:CN111597327A
公开(公告)日:2020-08-28
申请号:CN202010323594.5
申请日:2020-04-22
Applicant: 哈尔滨工业大学
IPC: G06F16/34 , G06F16/9532 , G06N3/04 , G06N3/08 , G06F16/36
Abstract: 本发明公开了一种面向舆情分析的无监督式多文档文摘生成方法。步骤1:实时采集网络舆情新闻,根据网络热点进行新闻集合自动划分;步骤2:对集合内每个舆情新闻进行无监督式的抽取单文档文摘;步骤3:对集合内的所有抽取的单文档文摘进行分析,得到无监督式的多文档文摘。本发明解决现有多文档文摘方法效果较低、生成式文摘实用性较差、中文舆情文摘训练语料匮乏的问题,以实现对舆情新闻的监控。
-
公开(公告)号:CN108920472B
公开(公告)日:2020-01-10
申请号:CN201810722720.7
申请日:2018-07-04
Applicant: 哈尔滨工业大学
Abstract: 本发明涉及一种基于深度学习的机器翻译系统的融合系统及方法,属于词汇融合技术领域。所述融合系统包括输入模块、编码模块、解码模块和输出模块;所述融合方法包括输入步骤、编码步骤、解码步骤和输出步骤;所述融合系统及方法具有提高机器翻译系统融合性能指标的特点。
-
公开(公告)号:CN108960319B
公开(公告)日:2019-12-03
申请号:CN201810700571.4
申请日:2018-06-29
Applicant: 哈尔滨工业大学
Abstract: 本发明提出了一种面向全局的机器阅读理解建模中的候选答案筛选方法,属于计算机信息筛选技术领域。所述方法将问题对应的所有段落作为候选答案片段定位范围,首先,获取段落的文本片段间的F1值,利用F1筛选出最佳候选答案片段,另一方面,提取段落和问题之间的特征后,利用逻辑回归模型进行相关性打分处理后,根据分数获得筛选后的候选答案段落集合,然后判断所述最佳候选答案片段所在段落是否将所述候选答案段落集合中,并将所述最佳候选答案片段所在段落强制放在所述候选答案段落集合的首位,最终输出所述最佳候选答案片段和所述候选答案段落集合。所述方法具有提高训练和预测效率等优点。
-
公开(公告)号:CN105677913B
公开(公告)日:2019-04-26
申请号:CN201610111365.0
申请日:2016-02-29
Applicant: 哈尔滨工业大学
Abstract: 一种基于机器翻译的中文语义知识库的构建方法,本发明涉及中文语义知识库的构建的方法。本发明是要解决中文语义知识库匮乏的问题、现有技术昂贵的人力及时间的问题,和提高基于跨语言映射的语义知识库翻译的性能的问题,而提出的一种基于机器翻译的中文语义知识库的构建方法。该方法是通过一、得到标注了实体的源语言端语料;二、根据主题模型计算得到实体的主题分布;三、根据源语言端实体词表从短语翻译表中抽取源语言端语义知识库中实体的翻译概率,记为p(tj|si);四、构建基于源语言端语义知识库图结构信息的实体翻译模型等步骤实现的。本发明应用于中文语义知识库的构建领域。
-
公开(公告)号:CN106202068B
公开(公告)日:2019-01-22
申请号:CN201610590241.5
申请日:2016-07-25
Applicant: 哈尔滨工业大学
Abstract: 基于多语平行语料的语义向量的机器翻译方法,本发明涉及机器翻译方法。本发明是要解决双语平行语料获得的语义信息通常较少的问题。本发明是通过一、输入平行的源语言1、2以及目标语言;二、根据公式(1)到公式(6)计算得到隐状态h′和h″;三、计算得到的向量c,四、生成目标语言;或者一、输入源语言1、2以及目标语言;二、计算向量c1和向量c2的归一化之后的余弦距离;三、衡量向量c1和向量c2的相似性;四、令dis(c1,c2)大于阈值δ;给定源语言1句子集合S1和源语言2句子集合S2,即表示为如下约束最优化问题:五、建立最终目标函数等步骤实现的。本发明应用于机器翻译领域。
-
公开(公告)号:CN107329960B
公开(公告)日:2019-01-01
申请号:CN201710514935.5
申请日:2017-06-29
Applicant: 哈尔滨工业大学
Abstract: 本发明提出了一种上下文敏感的神经网络机器翻译中未登录词翻译装置和方法,属于词语翻译设备和方法技术领域。本发明提出的未登录词翻译装置通过查找模块、候选词提供模块、特征抽取模块、评价模块、排序模块和替换模块实现神经网络翻译工作,本发明提出的未登录词翻译装置解决了现有翻译装置和方法翻译准确度低的问题,并有效提高了神经网络翻译中未登录词翻译的准确度,同时,其适用于各种神经网络翻译领域。
-
公开(公告)号:CN108960319A
公开(公告)日:2018-12-07
申请号:CN201810700571.4
申请日:2018-06-29
Applicant: 哈尔滨工业大学
Abstract: 本发明提出了一种面向全局的机器阅读理解建模中的候选答案筛选方法,属于计算机信息筛选技术领域。所述方法将问题对应的所有段落作为候选答案片段定位范围,首先,获取段落的文本片段间的F1值,利用F1筛选出最佳候选答案片段,另一方面,提取段落和问题之间的特征后,利用逻辑回归模型进行相关性打分处理后,根据分数获得筛选后的候选答案段落集合,然后判断所述最佳候选答案片段所在段落是否将所述候选答案段落集合中,并将所述最佳候选答案片段所在段落强制放在所述候选答案段落集合的首位,最终输出所述最佳候选答案片段和所述候选答案段落集合。所述方法具有提高训练和预测效率等优点。
-
公开(公告)号:CN108920472A
公开(公告)日:2018-11-30
申请号:CN201810722720.7
申请日:2018-07-04
Applicant: 哈尔滨工业大学
Abstract: 本发明涉及一种基于深度学习的机器翻译系统的融合系统及方法,属于词汇融合技术领域。所述融合系统包括输入模块、编码模块、解码模块和输出模块;所述融合方法包括输入步骤、编码步骤、解码步骤和输出步骤;所述融合系统及方法具有提高机器翻译系统融合性能指标的特点。
-
公开(公告)号:CN107301226B
公开(公告)日:2018-06-15
申请号:CN201710469901.9
申请日:2017-06-20
Applicant: 哈尔滨工业大学
Abstract: 本发明提出了一种问答系统中检索子模块的自动评价方法,属于模块自评价方法技术领域。通过针对检索出来的文档列表,根据其中每个位置上的文档与问题、与参考答案之间的相关程度(由各种特征表示),通过机器学习模型(具体是GBDT),准确估计出这个检索结果的MAP值,从而完成最终的评价过程。具有评价确定度高,评价方法简洁等特点。适用于各种问答系统中检索子模块的自评价。
-
-
-
-
-
-
-
-
-