一种面向全局的机器阅读理解建模中的候选答案筛选方法

    公开(公告)号:CN108960319B

    公开(公告)日:2019-12-03

    申请号:CN201810700571.4

    申请日:2018-06-29

    Abstract: 本发明提出了一种面向全局的机器阅读理解建模中的候选答案筛选方法,属于计算机信息筛选技术领域。所述方法将问题对应的所有段落作为候选答案片段定位范围,首先,获取段落的文本片段间的F1值,利用F1筛选出最佳候选答案片段,另一方面,提取段落和问题之间的特征后,利用逻辑回归模型进行相关性打分处理后,根据分数获得筛选后的候选答案段落集合,然后判断所述最佳候选答案片段所在段落是否将所述候选答案段落集合中,并将所述最佳候选答案片段所在段落强制放在所述候选答案段落集合的首位,最终输出所述最佳候选答案片段和所述候选答案段落集合。所述方法具有提高训练和预测效率等优点。

    一种面向全局的机器阅读理解建模中的候选答案筛选方法

    公开(公告)号:CN108960319A

    公开(公告)日:2018-12-07

    申请号:CN201810700571.4

    申请日:2018-06-29

    Abstract: 本发明提出了一种面向全局的机器阅读理解建模中的候选答案筛选方法,属于计算机信息筛选技术领域。所述方法将问题对应的所有段落作为候选答案片段定位范围,首先,获取段落的文本片段间的F1值,利用F1筛选出最佳候选答案片段,另一方面,提取段落和问题之间的特征后,利用逻辑回归模型进行相关性打分处理后,根据分数获得筛选后的候选答案段落集合,然后判断所述最佳候选答案片段所在段落是否将所述候选答案段落集合中,并将所述最佳候选答案片段所在段落强制放在所述候选答案段落集合的首位,最终输出所述最佳候选答案片段和所述候选答案段落集合。所述方法具有提高训练和预测效率等优点。

Patent Agency Ranking