-
公开(公告)号:CN119942718A
公开(公告)日:2025-05-06
申请号:CN202510091003.9
申请日:2025-01-21
Applicant: 江苏全讯安全科技有限公司 , 南通大学
IPC: G08B17/12 , G06V20/52 , G06V10/25 , G06V10/764 , G06V10/82 , G06V10/774 , G06N3/0464 , G08B21/18 , G08B17/10 , G08B17/06 , G08B17/117
Abstract: 本申请的基于物联网的医院智慧消防监控系统及方法,涉及物联网技术领域,通过获取灭火设备、传感器和监控摄像头的空间位置坐标;训练火情预测模型;利用火情预测模型预测医院内部图像属于各个火情类别的概率值,判断是否有火,若有火,触发第一级预警;连续n1个正常采样间隔内获取环境参数计算综合火灾风险值,若综合火灾风险值小于等于风险阈值,则确认无火;若综合火灾风险值大于风险阈值,则确认有火,触发第二级预警;计算调整系数,根据调整系数得到第二采样间隔,采样异常环境参数;获取正常环境参数,计算差异值,若差异值大于差值阈值,则将传感器的空间位置坐标作为火灾点,启动灭火设备,提高了火情识别的准确性。
-
公开(公告)号:CN117877711B
公开(公告)日:2025-03-11
申请号:CN202311577208.5
申请日:2023-11-23
Applicant: 南通大学
IPC: G16H50/20 , G06F18/211 , G06F18/243 , G06N5/01 , G06N7/02
Abstract: 本发明提供了一种面向精神分裂症的双通道模糊信息粒与特征选择方法,属于智慧医疗技术领域,解决了精神分裂症中存在过多冗余病理特征且特征间相关性难以全面表述的技术问题。其技术方案为:包括如下步骤:S10、读取精神分裂症数据集;S20、根据两种不同的粒度表示形成模糊相似关系;S30、刻画精神分裂症数据的特征重要度,对特征进行排序;S40、对不同的粒度表示形成的特征序列采用类内类间策略决定最终的特征序列。本发明的有益效果为:去除冗余病理特征,从稀疏和模糊凸半球两个粒度层面描述样本之间的模糊相关性,更精确地表示样本的紧密性,并提高检测效率,帮助医生有效分析精神分裂症的病变情况,具有较强的应用价值。
-
公开(公告)号:CN117059284B
公开(公告)日:2024-12-17
申请号:CN202311031910.1
申请日:2023-08-16
Applicant: 南通大学
IPC: G16H50/70 , G16H10/60 , G16H70/00 , G06F18/211 , G06N3/006
Abstract: 本发明提供了一种基于协同进化离散粒子群优化的糖尿病并行属性约简方法,属于医学电子病例技术领域。解决了糖尿病症电子病历数据维度大、冗余多,导致医生判断错误的技术问题。其技术方案为:包括以下步骤:S1:将糖尿病症数据存放到分布式文件系统中;S2:计算机节点读取HDFS中block块的数据;S3:主节点得到汇总的数据键值对后;S4:主节点将进行步骤S3操作所得的 键值对数据广播到各个子节点;S5:主节点对得到的属性评价函数结合CQBPSO算法进行建模。本发明的有益效果为:本发明结合粗糙集理论和Spark分布式计算平台,能够从糖尿病症数据集中筛选出最具代表性和关键性的属性。
-
公开(公告)号:CN118447304A
公开(公告)日:2024-08-06
申请号:CN202410547182.8
申请日:2024-05-06
Applicant: 南通大学
IPC: G06V10/764 , G06V10/44 , G06V10/80 , G16H50/20
Abstract: 本发明提供了基于模糊超盒质量感知神经网络的精神分裂症分类方法,属于智能医学处理技术领域,解决了精神分裂症患者动态脑网络多个时间窗口数据质量不一致的问题;其技术方案为:利用三个特殊的卷积滤波器提取精神分裂症患者动态脑网络每个时间窗口的特征,然后通过全连接层和激活层以获得证据;将多视图证据作为输入构造多视图模糊最小最大神经网络分类器,输出每个视图的类节点;使用证据理论直接建模不确定性,计算每个视图的质量感知权重以评估每个视图的分类可信度;根据每个视图的质量感知权重集成多个视图的类节点以得到最终诊断结果。本发明的有益效果为:本发明分类精度较好,为精神分裂症诊断提供决策支持,提高患者就医满意度。
-
公开(公告)号:CN118136269A
公开(公告)日:2024-06-04
申请号:CN202410284924.2
申请日:2024-03-13
Applicant: 南通大学
Abstract: 本发明提供了面向不完整多模态数据的模糊知识蒸馏方法,属于医学信息智能诊断技术领域,解决了知识蒸馏过程中教师模型和学生模型之间模型能力不匹配的技术问题。其技术方案为:包括以下步骤:S1、使用由Kawahara提出的边到边卷积E2E,边到节点卷积E2N,节点到图卷积N2G获取每一步的特征图;S2、获得经过概括和选择的信息;S3、设计了三类损失函数,分别为表示损失、预测分布损失和交叉熵损失;S4、通过最小化三类损失函数,对学生网络进行训练。本发明的有益效果为:本发明可以显著提高在模态缺失情况下模型对精神疾病识别的准确率,辅助医生进行诊断分析,给患者带来更好的医疗服务。
-
公开(公告)号:CN117542503A
公开(公告)日:2024-02-09
申请号:CN202311334208.2
申请日:2023-10-16
Applicant: 南通大学
IPC: G16H50/20 , G06F18/241 , G06F18/213 , G06F18/25 , G06N3/042 , G06N3/0464 , G06N3/048 , G06N3/08 , A61B5/00 , A61B5/055 , A61B5/16
Abstract: 本发明提供了基于动态证据融合神经网络的精神分裂症多视图分类方法,属于智能医学处理技术领域;其技术方案为:利用边缘到边缘、边缘到节点和节点到图卷积滤波器提取精神分裂症患者动态脑网络连接矩阵每个视图的特征图;将每个视图的特征图分别通过全连接层和激活层以获得多视图动态证据;根据动态证据导出迪利克雷分布参数,调整置信度后构建动态信任函数并计算每个视图的动态信任函数;在分类的决策层进行证据融合后获得联合信任函数;使用多视图损失函数训练神经网络。本发明的有益效果为:本发明分类精度较好,为精神分裂症诊断提供决策支持,提高患者就医满意度。
-
公开(公告)号:CN116665906B
公开(公告)日:2023-12-26
申请号:CN202310601158.3
申请日:2023-05-25
Applicant: 南通大学
Abstract: 本发明提供了一种基于相似性孪生网络的静息态功能磁共振脑龄预测方法,属于医学图像智能诊断技术领域,解决了传统脑龄预测方法中准确性和稳定性不足的技术问题。其技术方案为:包括以下步骤:S1:采集被试的功能性磁共振成像rs‑fMRI数据;S2:构建孪生神经网络;S3:设计特征相似性与标签相似性度量模块;S4:定义置信度评估脑龄预测模块;S5:将测试数据集中的脑部影像数据输入到该模型中进行分析,从而得出每个测试数据样本的预测脑龄。本发明的有益效果为:预测准确率高,对脑影像数据进行精确的预测,帮助医生更准确地评估患者的脑龄。
-
公开(公告)号:CN117058393A
公开(公告)日:2023-11-14
申请号:CN202311108211.2
申请日:2023-08-30
Applicant: 南通大学
IPC: G06V10/26 , G06V10/762 , G06V10/74 , G06T7/00
Abstract: 本发明提供了一种用于眼底硬性渗出图像分割的超像素三支证据DPC方法,属于图像处理分析技术领域。解决了聚类医学图像分割中参数难以确定,边缘区域划分不清晰的技术问题。其技术方案为:包括以下步骤:S10、人工获取眼底硬性渗出图像的病变区域;S20、对眼底硬性渗出图像进行预处理得到图像的CIELab空间;S30、对获得的CIELab空间进行SLIC超像素处理;S40、基于三支聚类理论将图像分割分为两阶段;S50、在获取第一阶段回传的病变图像信息之上。本发明的有益效果为:本发明通过引入超像素算法提高了运行效率,为糖尿病视网膜硬性渗出病变疾病的临床诊断和患者的发现治疗提供了重要的医学影像依据。
-
公开(公告)号:CN116452865B
公开(公告)日:2023-11-07
申请号:CN202310345231.5
申请日:2023-04-03
Applicant: 南通大学
IPC: G06V10/764 , G06V10/774 , G06V10/82 , G06N3/043 , G06N3/047 , G06N3/082 , G06N3/045
Abstract: 本发明提供了一种基于模糊逻辑的跳跃式注意力肺部病理图像分类方法,属于肺部组织病理图像分类技术领域,解决了相似形态和结构下复杂肺部病理组织图像分类准确率低的技术问题。其技术方案为:先从肺部病理图像数据集中连续读取RGB病理图像,构建基于模糊逻辑的隶属函数和非隶属函数,对肺部病理图像数据进行模糊处理;再次构建跳跃式多头自注意力算法,通过将前半部分的特征按规则连接到后半部分的特征中,提取肺部病理图像特征;根据模糊规则去模糊化得到的数据,并输入多层感知机,得到每种分类的概率分布,取概率最高的作为最终分类结果。本发明的有益效果为:为肺部组织病理图像的分类提供决策支持,提升病理医生工作效率。
-
公开(公告)号:CN116994743A
公开(公告)日:2023-11-03
申请号:CN202310851846.5
申请日:2023-07-11
Applicant: 南通大学
IPC: G16H50/20 , G16H10/60 , G16H50/70 , G06F18/214 , G06F18/2415 , G06N3/042 , G06N3/0464 , G06N3/045 , G06N3/084
Abstract: 本发明提供了一种基于序贯三支的置信图卷积神经网络的自闭症分类方法,属于图卷积神经网络与序贯三支决策技术领域。解决了自闭症诊断过程存在的不确定性的技术问题。其技术方案为:首先,该方法通过定义置信度,描述诊断过程中存在的不确定性;然后,定义序贯三支的置信度阈值;接着,将序贯三支决策模块加入置信度图卷积神经网络模型,得到样本的预测标签;最后,通过自闭症数据集,评估自闭症预测模型的性能。本发明的有益效果为:有效提升自闭症的分类准确率。
-
-
-
-
-
-
-
-
-