-
公开(公告)号:CN116994743B
公开(公告)日:2024-04-09
申请号:CN202310851846.5
申请日:2023-07-11
Applicant: 南通大学
IPC: G16H50/20 , G16H10/60 , G16H50/70 , G06F18/214 , G06F18/2415 , G06N3/042 , G06N3/0464 , G06N3/045 , G06N3/084
Abstract: 本发明提供了一种基于序贯三支的置信图卷积神经网络的自闭症分类方法,属于图卷积神经网络与序贯三支决策技术领域。解决了自闭症诊断过程存在的不确定性的技术问题。其技术方案为:首先,该方法通过定义置信度,描述诊断过程中存在的不确定性;然后,定义序贯三支的置信度阈值;接着,将序贯三支决策模块加入置信度图卷积神经网络模型,得到样本的预测标签;最后,通过自闭症数据集,评估自闭症预测模型的性能。本发明的有益效果为:有效提升自闭症的分类准确率。
-
公开(公告)号:CN113012775A
公开(公告)日:2021-06-22
申请号:CN202110341510.5
申请日:2021-03-30
Applicant: 南通大学
IPC: G16H10/60 , G16H15/00 , G06F16/182
Abstract: 本发明提供了一种红斑病电子病历病变分类的增量属性约简Spark方法,基于知识粒度的动态变化数据集增量约简算法与处理大数据常用的Spark并行框架相结合,在处理复杂,大规模和动态的数据集方面有着良好的效果,有效提高处理速度,能够进一步提高电子病历属性约简的效率和精度。
-
公开(公告)号:CN113159156B
公开(公告)日:2023-04-18
申请号:CN202110405276.8
申请日:2021-04-15
Applicant: 南通大学
IPC: G06V10/764 , G06V10/774 , G06V10/82 , G06V10/40
Abstract: 本发明提供了一种用于宫颈癌数据分类的粗糙图卷积方法,要从宫颈癌数据中获得宫颈癌病变细胞信息的数据集合及其决策分类;计算宫颈癌数据中决策属性的依赖度,约简子集的属性重要度;按照约简子集的重要度排序选择可以得到宫颈癌数据中病理特征约简子集R;将经过粗糙集处理后的宫颈数据集转换成拓扑图的形式,作为神经网络的输入;利用神经网络采取一阶切比雪夫ChebNet的方法进行图卷积,用半监督方法进行节点分类,所得到的结果经过可视化后可求出宫颈癌数据中数据所属的类。本发明能够有效提高对宫颈癌数据进行分类的效率和精度,对宫颈癌数据计算机智能辅助分类具有较强的应用价值。
-
公开(公告)号:CN116994743A
公开(公告)日:2023-11-03
申请号:CN202310851846.5
申请日:2023-07-11
Applicant: 南通大学
IPC: G16H50/20 , G16H10/60 , G16H50/70 , G06F18/214 , G06F18/2415 , G06N3/042 , G06N3/0464 , G06N3/045 , G06N3/084
Abstract: 本发明提供了一种基于序贯三支的置信图卷积神经网络的自闭症分类方法,属于图卷积神经网络与序贯三支决策技术领域。解决了自闭症诊断过程存在的不确定性的技术问题。其技术方案为:首先,该方法通过定义置信度,描述诊断过程中存在的不确定性;然后,定义序贯三支的置信度阈值;接着,将序贯三支决策模块加入置信度图卷积神经网络模型,得到样本的预测标签;最后,通过自闭症数据集,评估自闭症预测模型的性能。本发明的有益效果为:有效提升自闭症的分类准确率。
-
公开(公告)号:CN113012775B
公开(公告)日:2021-10-08
申请号:CN202110341510.5
申请日:2021-03-30
Applicant: 南通大学
IPC: G16H10/60 , G16H15/00 , G06F16/182
Abstract: 本发明提供了一种红斑病电子病历病变分类的增量属性约简Spark方法,基于知识粒度的动态变化数据集增量约简算法与处理大数据常用的Spark并行框架相结合,在处理复杂,大规模和动态的数据集方面有着良好的效果,有效提高处理速度,能够进一步提高电子病历属性约简的效率和精度。
-
公开(公告)号:CN112907604A
公开(公告)日:2021-06-04
申请号:CN202110281472.9
申请日:2021-03-16
Applicant: 南通大学
Abstract: 本发明提供了一种用于眼底棉绒斑图像分割的自适应超像素FCM方法,包括:S10、人为等比例裁剪出棉绒斑病变图像的病变区域;S20、对棉绒斑病变图像进行超像素处理,并将超像素点作为自适应FCM样本;S30、使用衍生多种群遗传算法优化自适应FCM聚类中心;S40、计算出聚类之后的逐像素损失值,回调参数;S50、形成眼底棉绒斑图像分割的遗传FCM聚类模型,输入眼底图像,既能输出分割后的眼底棉绒斑病变区域图像。本发明的一种用于眼底棉绒斑图像分割的自适应超像素FCM方法,大大降低了运行时间,提升图像分割时的精度,为相关糖尿病视网膜棉绒斑病变疾病的临床诊断和治疗提供重要的影像特征依据。
-
公开(公告)号:CN114494196A
公开(公告)日:2022-05-13
申请号:CN202210094089.7
申请日:2022-01-26
Applicant: 南通大学
IPC: G06T7/00 , G06T5/00 , G06N5/00 , G06N5/04 , G06N3/12 , G06N3/04 , G06N3/08 , G16H30/20 , G16H50/20
Abstract: 本发明涉及医学信息智能处理技术领域,具体涉及基于遗传模糊树的视网膜糖尿病变深度网络检测方法。首先对视网膜图像进行增强处理,将病变区域展宽,对正常区域进行压缩;然后搭建网络模型U‑net,准确分割出视网膜血管以及血管末梢图像;接着将模型分割出的血管图像与真实诊断结果进行训练,构建出可解释的模糊决策树;其次对决策树权值编码并且构造适应度函数,基于遗传算法对多棵决策树进行组合优化;最后引入准确率指标动态调整损失函数中的惩罚项。本发明的有益效果是可精确地识别出视网膜糖尿病变血管末梢,提高检测分类准确度,更有效地帮助医生诊断视网膜糖尿病变,让患者获得最佳治疗时期。
-
公开(公告)号:CN113159156A
公开(公告)日:2021-07-23
申请号:CN202110405276.8
申请日:2021-04-15
Applicant: 南通大学
Abstract: 本发明提供了一种用于宫颈癌数据分类的粗糙图卷积方法,要从宫颈癌数据中获得宫颈癌病变细胞信息的数据集合及其决策分类;计算宫颈癌数据中决策属性的依赖度,约简子集的属性重要度;按照约简子集的重要度排序选择可以得到宫颈癌数据中病理特征约简子集R;将经过粗糙集处理后的宫颈数据集转换成拓扑图的形式,作为神经网络的输入;利用神经网络采取一阶切比雪夫ChebNet的方法进行图卷积,用半监督方法进行节点分类,所得到的结果经过可视化后可求出宫颈癌数据中数据所属的类。本发明能够有效提高对宫颈癌数据进行分类的效率和精度,对宫颈癌数据计算机智能辅助分类具有较强的应用价值。
-
公开(公告)号:CN114494196B
公开(公告)日:2023-11-17
申请号:CN202210094089.7
申请日:2022-01-26
Applicant: 南通大学
Abstract: 本发明涉及医学信息智能处理技术领域,具体涉及基于遗传模糊树的视网膜糖尿病变深度网络检测方法。首先对视网膜图像进行增强处理,将病变区域展宽,对正常区域进行压缩;然后搭建网络模型U‑net,准确分割出视网膜血管以及血管末梢图像;接着将模型分割出的血管图像与真实诊断结果进行训练,构建出可解释的模糊决策树;其次对决策树权值编码并且构造适应度函数,基于遗传算法对多棵决策树进行组合优化;最后引入准确率指标动态调整损失函数中的权重图。本发明的有益效果是可精确地识别出视网膜糖尿病变血管末梢,提高检测分类准确度,更有效地帮助医生诊断视网膜糖尿病变,让患者获得最佳治疗时期。
-
公开(公告)号:CN113378898B
公开(公告)日:2023-05-19
申请号:CN202110590764.0
申请日:2021-05-28
Applicant: 南通大学
IPC: G06T7/00 , G06V10/764 , G06V10/774 , G06V10/82 , G06N3/0464 , G06N3/084
Abstract: 本发明公开了一种基于相对熵损失函数卷积神经网络的脑龄预测方法,包括如下步骤:步骤1.利用采集被试的功能型磁共振影像数据形成原始样本集;步骤2.原始样本集中功能型磁共振影像数据预处理形成三维的T1图像数据并形成样本集;步骤3.将样本集划分为训练样本集和测试样本集;步骤4.利用训练样本集训练3DCNN形成脑龄预测模型,所述3DNN在训练过程中采用分类网络的相对熵损失函数反向更新3DCNN的网络参数;步骤5.将测试集输入脑龄预测模型得到预测的脑龄;用相对熵损失函数反向更新3DCNN的网络参数,同时采用中心化功能型磁共振影像数据中剔除周围无用信息,提高了脑龄预测模型的鲁棒性及预测精度。
-
-
-
-
-
-
-
-
-