基于多线索融合的暴恐音视频识别方法及装置

    公开(公告)号:CN108921002A

    公开(公告)日:2018-11-30

    申请号:CN201810367115.2

    申请日:2018-04-23

    Abstract: 本发明涉及计算机视频分类领域,提出了一种基于多线索融合的暴恐音视频识别方法,旨在解决音视频识别中,单一媒体模态分析音视频造成的大量误检和漏检问题。该方法包括:对用于进行暴恐识别的待检测音视频进行分割,提取音频帧序列和视频帧序列;按照预先指定的检测顺序检测所述音频帧序列和视频帧序列中是否包含暴恐信息;如果所述音频帧序列和/或视频序帧列包含暴恐信息,确定所述待检测音视频为暴恐音视频。本发明基于多个线索对音视频进行分级检测,能够快速、准确的从大量的音视频中识别出暴恐视频。

    基于对比的快速暴恐视频识别方法

    公开(公告)号:CN108734106A

    公开(公告)日:2018-11-02

    申请号:CN201810366397.4

    申请日:2018-04-23

    Abstract: 本发明涉及视频分类领域,提出了一种基于对比的快速暴恐视频识别方法,旨在解决在基于视觉特征的暴恐视频识别中由于特征描述子描述能力有限,所造成的暴恐视频识别的准确率(precious)和召回率(recall)相对较低问题。该方法包括:对用于进行暴恐识别的待检测视频进行镜头分割以选取待检测视频的关键帧;利用预先构建的暴恐视频识别模型,对该待检测视频的各关键帧进行哈希码运算,得到各上述关键帧的哈希码;将各上述关键帧的哈希码分别与预存暴恐视频的视频帧的哈希码比较,确定出与各上述关键帧相似的视频帧;如果与各上述关键帧相似的视频帧的数目超过设定阈值,确定该待检测视频为暴恐视频。本发明能够快速、准确的从大量的视频中识别出暴恐视频。

    基于深度学习的端到端的视频拷贝检测方法及装置

    公开(公告)号:CN108664902A

    公开(公告)日:2018-10-16

    申请号:CN201810367098.2

    申请日:2018-04-23

    Abstract: 本发明涉及视频分类领域,提出了一种基于深度学习的端到端的视频拷贝检测方法,旨在解决在视频拷贝检测中,两段视频中存在多处拷贝片段的检测困难,及无法准确定位拷贝视频片段的位置等问题。该方法的具体实施方式包括:对用于进行视频拷贝检测的两段待检测视频进行镜头分割以选取关键帧;利用预先构建的拷贝关系识别模型对所选取出的多个关键帧进行识别,确定各关键帧之间的拷贝关系;根据所得到的各关键帧之间的拷贝关系,构建两段上述待检测视频全部关键帧的贝关系矩阵;将该拷贝关系矩阵作为预先构建的定位识别模型的输入,定位两段所述待检测视中含有拷贝关系的片段。本发明能够快捷、高效地检测出两段视频中存在的多处拷贝关系的视频片段。

    基于图像与文本的视频的快速分类方法

    公开(公告)号:CN104657468B

    公开(公告)日:2018-07-31

    申请号:CN201510075140.X

    申请日:2015-02-12

    Abstract: 本发明提供种基于图像与文本的视频的快速分类方法,所述方法包括:分别关联多个视频的图像与多个视频类型、以及多个视频的文本与多个视频类型,从而生成对应视频类型的图像训练集及文本训练集;在每个所述图像训练集上分别提取图像特征信息进行训练从而创建图像预测模型,以及在每个所述文本训练集上提取文本特征信息进行训练从而创建文本预测模型;分别提取待检测的视频的图像特征信息在所述图像预测模型上和提取待检测的视频的文本特征信息在所述文本预测模型上进行预测,并对两个预测结果执行或运算作为检出类型。本发明所述方法能够实现对视频的快速分类。

    基于图像与文本的视频的快速分类方法

    公开(公告)号:CN104657468A

    公开(公告)日:2015-05-27

    申请号:CN201510075140.X

    申请日:2015-02-12

    CPC classification number: G06K9/627

    Abstract: 本发明提供一种基于图像与文本的视频的快速分类方法,所述方法包括:分别关联多个视频的图像与多个视频类型、以及多个视频的文本与多个视频类型,从而生成对应视频类型的图像训练集及文本训练集;在每个所述图像训练集上分别提取图像特征信息进行训练从而创建图像预测模型,以及在每个所述文本训练集上提取文本特征信息进行训练从而创建文本预测模型;分别提取待检测的视频的图像特征信息在所述图像预测模型上和提取待检测的视频的文本特征信息在所述文本预测模型上进行预测,并对两个预测结果执行或运算作为检出类型。本发明所述方法能够实现对视频的快速分类。

    一种对重复视频进行检测的方法

    公开(公告)号:CN103631932A

    公开(公告)日:2014-03-12

    申请号:CN201310655669.X

    申请日:2013-12-06

    Inventor: 胡卫明 李璇 李兵

    CPC classification number: G06F17/30787

    Abstract: 本发明公开了一种对重复视频进行检测的方法,该方法包括以下步骤:对数据库中的所有视频进行帧采样,提取每个视频的关键帧,以获取相应视频的关键信息;对提取得到的视频关键帧的局部特征和全局特征分别进行分析得到局部分析特征和全局分析特征;对局部分析特征和全局分析特征进行融合,得到一个对于视频变换鲁棒的索引特征,用于进行视频重复性检测;利用索引特征对于待检测视频进行重复视频的检测。利用本发明,可以快速高效的检测出重复视频。

    基于多视角多示例学习的恐怖视频场景识别方法

    公开(公告)号:CN103473555A

    公开(公告)日:2013-12-25

    申请号:CN201310376618.3

    申请日:2013-08-26

    Abstract: 本发明公开了一种基于多视角多示例学习的恐怖视频识别方法,其包括:对训练视频集合中的视频提取视频镜头,并针对每个视频镜头选取情感代表帧和情感突变帧;对训练视频集合中每个视频镜头提取音频和视觉特征,其中视觉特征基于所提取的情感代表帧和情感突变帧提取;对于每一个视频提取其四个视角特征向量,构成训练视频集合的多视角特征集合;对所得到的训练视频集合对应的多视角特征集合和待识别视频的多视角特征向量进行稀疏重构,得到稀疏重构系数;根据所述稀疏重构系数计算待识别视频的多视角特征向量与训练视频集合中恐怖视频集合与非恐怖视频集合分别对应的多视频特征集合的重构误差,进而确定待识别视频是否为恐怖视频。

    基于脉冲神经网络的视觉识别方法及装置

    公开(公告)号:CN119314020A

    公开(公告)日:2025-01-14

    申请号:CN202411423624.4

    申请日:2024-10-12

    Abstract: 本发明涉及目标识别技术领域,公开了基于脉冲神经网络的视觉识别方法及装置,包括:对预设动态目标的视频样本数据进行脉冲编码得到脉冲序列,输入预设的脉冲神经网络进行残差计算,对脉冲网络输出特征进行长短期时序特征提取,将提取出的长短期时序特征与脉冲网络输出特征进行融合得到目标融合特征,计算目标融合特征的损失值,对脉冲神经网络进行反向迭代更新,得到目标长短期时序特征融合模型;将待识别的动态目标的视频流数据输入到长短期时序特征融合模型得到识别结果。本发明通过结合长短期时序特征提取,克服了现有脉冲神经网络在捕捉和识别动态数据时无法有效利用时序信息进行动态数据识别的缺陷,提升对于动态数据的视觉识别准确性。

Patent Agency Ranking