-
公开(公告)号:CN119314081A
公开(公告)日:2025-01-14
申请号:CN202411355315.8
申请日:2024-09-26
Applicant: 中国科学院自动化研究所
IPC: G06V20/40 , G06V10/44 , G06V10/764 , G06V10/80 , G06V10/82 , G06N3/045 , G06N3/0464 , G06N3/049
Abstract: 本公开提供了一种视频分类方法、装置、电子设备、存储介质和程序产品,视频分类方法包括:获取目标视频帧序列;对目标视频帧序列进行树状取样,得到两层结构的视频帧序列和关键帧;基于卷积神经网络模型对视频帧序列进行特征提取处理,得到时序特征;基于脉冲神经网络模型对关键帧进行特征提取处理,得到脉冲特征;对时序特征和脉冲特征进行融合处理,得到视频融合特征;根据视频融合特征进行分类处理,得到目标视频帧序列的类别信息。该方法能够提升视频的特征表达力,从而提升了视频分类的准确性,能够更好地完成视频分类任务。
-
公开(公告)号:CN119314020A
公开(公告)日:2025-01-14
申请号:CN202411423624.4
申请日:2024-10-12
Applicant: 中国科学院自动化研究所
Abstract: 本发明涉及目标识别技术领域,公开了基于脉冲神经网络的视觉识别方法及装置,包括:对预设动态目标的视频样本数据进行脉冲编码得到脉冲序列,输入预设的脉冲神经网络进行残差计算,对脉冲网络输出特征进行长短期时序特征提取,将提取出的长短期时序特征与脉冲网络输出特征进行融合得到目标融合特征,计算目标融合特征的损失值,对脉冲神经网络进行反向迭代更新,得到目标长短期时序特征融合模型;将待识别的动态目标的视频流数据输入到长短期时序特征融合模型得到识别结果。本发明通过结合长短期时序特征提取,克服了现有脉冲神经网络在捕捉和识别动态数据时无法有效利用时序信息进行动态数据识别的缺陷,提升对于动态数据的视觉识别准确性。
-