基于激光结构光的焊缝跟踪视觉传感器

    公开(公告)号:CN107030352B

    公开(公告)日:2020-02-07

    申请号:CN201710269244.3

    申请日:2017-04-24

    Abstract: 本发明属于视觉传感测量技术领域,旨在解决目前基于激光结构光的焊缝跟踪视觉传感器存在的功能单一、通用性低和灵活性差等方面的缺陷。为此目的,本发明提供一种基于激光结构光的焊缝跟踪视觉传感器,包括:激光发生器,用于向工件的表面发射激光产生激光结构光平面,以形成激光条纹;图像采集装置,用于采集焊缝图像;相对图像采集装置滑动设置的减光滤光系统,当减光滤光系统位于第一位置时,用于在焊接过程中将进入到图像采集装置中的光线进行减光和滤光;当减光滤光系统位于第二位置时,传感器进行标定和焊缝初始点导引。本发明可用于多种类型焊缝的焊缝初始点导引和焊缝跟踪等工作要求,具有良好的通用性,且自动化程度较高。

    仿豹鲂鮄鱼水下机器人
    52.
    发明公开

    公开(公告)号:CN110203359A

    公开(公告)日:2019-09-06

    申请号:CN201910474817.5

    申请日:2019-06-03

    Abstract: 本发明属于仿生机器人技术领域,具体涉及一种仿豹鲂鮄鱼水下机器人,旨在解决现有技术中水下机器人的螺旋桨推进方式工作环境适应性差、运动状态不稳定、难以满足实际工作需求,低速运动时工作效率低等问题。本发明仿豹鲂鮄鱼水下机器人包括鱼身本体、背鳍、一对胸鳍、尾舱和尾鳍,所述鱼身本体内部设置有控制单元,本发明仿豹鲂鮄鱼水下机器人在控制单元的控制下,可以在水中采用两种推进模式,本发明兼具良好的机动性和运动稳定性,环境适应性强,可在复杂的海底环境中实现平稳运动,同时本发明拥有信息采集模块和探测模块可应用于水下环境监测、水下勘察。

    一种提高射电望远镜接收机一次定位精度的方法

    公开(公告)号:CN107369908B

    公开(公告)日:2019-08-23

    申请号:CN201710531998.1

    申请日:2017-07-03

    Abstract: 本发明提供了一种提高射电望远镜接收机一次定位精度的方法,其包括以下步骤:S1:利用测量仪器对接收机的位姿进行测量,得到测量值xM;S2:利用纠偏控制模型中的纠偏流程得到关节纠偏控制量Δθ;S3:关节纠偏控制量Δθ与经逆运动学变换得到的关节空间期望值θ相加之后得到控制器的输入量θC,通过控制器后作用于馈源支撑系统;S4:重复步骤S1至S3,在接收机姿态误差允许的范围内,补偿接收机的一次定位的位置误差。本发明可以较大程度地补偿接收机的一次定位的位置误差,从而减小Stewart平台精调机构对于位置误差的补偿负担,甚至在原有一次定位误差较小的情况下使得无须控制Stewart平台就可达到相关的精度要求。

    压电陶瓷致动器纳米级位移融合测量系统、方法和装置

    公开(公告)号:CN110132117A

    公开(公告)日:2019-08-16

    申请号:CN201910478437.9

    申请日:2019-06-03

    Abstract: 本发明属于测量仪器领域,具体涉及一种压电陶瓷致动器纳米级位移融合测量系统,旨在为了解决现有测量系统对压电陶瓷致动器的纳米级形变位移测量结果受非线性影响较大,测量精确度低,采样频率低。本发明包括自感知位移测量数据采集模块,用于测量压电陶瓷电极表面电荷和驱动电压;时间-数字转换测量数据采集模块,实现将应变片电阻测量转换为时间测量;数据处理和融合模块,用于对测量数据进行处理和计算,并通过异步多频率数据源融合算法融合为高频率的位移数据,作为最终测量结果。本发明占用空间小,散热低,能对压电陶瓷致动器的纳米尺度运动进行实时、精确的测量,测量结果克服了非线性影响,测量精度高,采样频率高。

    基于视觉的服务机器人抓取目标物体的方法

    公开(公告)号:CN108858199A

    公开(公告)日:2018-11-23

    申请号:CN201810841533.0

    申请日:2018-07-27

    Abstract: 本发明涉及服务机器人技术领域,具体涉及一种基于视觉的服务机器人抓取目标物体的方法,旨在解决存在阻碍目标物体被直接抓取的障碍物情形下的机器人抓取问题。本发明中抓取目标物体的方法包括:获取彩色图像以及相机坐标系下的原始三维点云数据;进行目标物体的检测,获取目标物体的点云数据,并得到目标物体周围的环境点云数据,将上述点云数据变换到机械臂坐标系下;在机械臂坐标系下,拟合目标物体所在平面的平面方程;在此基础上,获取各障碍物的位置和尺寸信息,以及目标物体的位置及尺寸信息;基于上述位置和尺寸信息,先对阻碍目标物体被直接抓取的障碍物进行搬移,而后完成对目标物体的抓取。本发明有效提高了服务机器人的抓取能力。

    用于大口径射电望远镜换源的串级避振规划方法与系统

    公开(公告)号:CN107357325A

    公开(公告)日:2017-11-17

    申请号:CN201710453911.3

    申请日:2017-06-15

    Abstract: 本发明涉及大口径射电望远镜的运动控制领域,具体涉及一种用于大口径射电望远镜换源的串级避振规划方法与系统。目的是为了降低换源过程中因加减速运动引起的系统振动,同时避免因使用物理阻尼器而增加成本。本发明的规划系统中,任务参数指令下达模块将指定的换源参数发送给串级避振规划模块,该模块通过两个子处理过程:初步运动曲线规划和ZVD输入整形,输出的最终运动规划曲线通过指令分解器求解出各执行机构的控制指令,通过控制驱动机构完成大口径射电望远镜的换源任务。此外,串级避振规划模块需要用到系统参数估计器产生的系统参数。本发明显著降低了因加减速运动引起的系统振动,提高了馈源接收机定位精度,并保证了系统的快速性。

    一种可蜷缩的蛇形机械臂
    59.
    发明公开

    公开(公告)号:CN107225564A

    公开(公告)日:2017-10-03

    申请号:CN201710350660.6

    申请日:2017-05-17

    Abstract: 本发明提供了一种可蜷缩的蛇形机械臂,旋转给进机构提供一容置空间,钢丝驱动机构安装于旋转给进机构,并连接运动臂,钢丝驱动机构可在旋转给进机构的驱动下旋转,带动运动臂蜷缩放置在容置空间内。通过将蛇形机械臂的运动臂安装在钢丝驱动机构侧面,可实现运动臂绕钢丝驱动机构的蜷缩,提高空间利用率;通过将蛇形机械臂与给进平台集成为一体,减小了整体尺寸,便于在狭窄应用环境中使用;通过自身可伸缩的单元模块串联构成运动臂,可在需要时,减小运动臂的长度和蜷缩半径,使蛇形机械臂更加紧凑。

    利用虚拟现实手柄确定机器人轨迹的规划方法及系统

    公开(公告)号:CN107214702A

    公开(公告)日:2017-09-29

    申请号:CN201710515072.3

    申请日:2017-06-29

    Abstract: 本发明涉及一种利用虚拟现实手柄确定机器人轨迹的规划方法及系统,所述规划方法包括:在第一个采样周期内,获取虚拟现实手柄的初始手柄位姿和机器人的初始位姿,并获取所述虚拟现实手柄的当前手柄位姿;对所述初始手柄位姿和当前手柄位姿进行预处理得到虚拟现实手柄的位姿增量,并转换为机器人的位姿增量;根据所述机器人的初始位姿及位姿增量确定机器人的目标位姿;将表征所述机器人的目标位姿的离散点连成折线,在任意相邻的两条折线之间插入过渡段轨迹进行平滑处理,得到平滑曲线,其中,所述平滑曲线包括位置曲线和姿态曲线;对所述平滑曲线进行位姿插补,得到离散的插补点,根据所述插补点可快速准确的确定机器人的运行轨迹。

Patent Agency Ranking