多聚焦图像融合方法
    41.
    发明授权

    公开(公告)号:CN102509280B

    公开(公告)日:2013-09-18

    申请号:CN201110355867.5

    申请日:2011-11-10

    Applicant: 重庆大学

    Abstract: 本发明公开了一种多聚焦图像融合方法,属于图像处理领域。在多聚焦图像融合过程中采用增强差分演化方法和扩块选择机制图像融合方法,其中相比于标准差分演化方法,该增强差分演化方法根据图像的大小,区间初始化种群,在每一次迭代后进行种群判断,在种群中各个体相同的前提下保留其中一个个体,再利用标准差分演化算法的初始化方法,在相应的区间上重新初始化其余个体,一起作为新一代种群,加强局部搜索,由此获得图像的最佳分块大小;另外,在图像块的适应度相等时,选择扩展块,比较获得融合的图像块。通过本发明,提高了图像融合中寻找最佳分块大小的效率,并且降低了计算的复杂度;另外,在图像融合中充分考虑了整体融合图像的清晰度。

    一种基于生成噪声估计的无参考图像质量评价方法

    公开(公告)号:CN119992299A

    公开(公告)日:2025-05-13

    申请号:CN202510077898.0

    申请日:2025-01-17

    Applicant: 重庆大学

    Abstract: 本发明公开了一种基于生成噪声估计的无参考图像质量评价方法,包括以下步骤:S1:训练第一神经网络模型和第二神经网络模型。第一神经网络模型的训练步骤包括:将失真图像样本输入至编码器中将失真图像特征映射至潜在空间中;在潜在空间中进行采样,通过解码器生成不同级别的噪声图像;将失真图像输入至扩散模型进行退化修复,并生成伪参考图像;将伪参考图和噪声图像进行叠加,并与失真图像计算损失函数进行参数优化。将失真图像输入至训练好的第一神经网络模型后,生成不同级别的噪声图像。将不同级别的噪声图像输入至训练好的第二神经网络模型,生成图像质量分数;本发明能够准确的模拟失真图像退化,并学习图像失真,提高了评估的准确性。

    基于两阶段注意力定位框架的细粒度图像分类方法及系统

    公开(公告)号:CN118608829A

    公开(公告)日:2024-09-06

    申请号:CN202410652738.X

    申请日:2024-05-24

    Applicant: 重庆大学

    Abstract: 本发明公开了基于两阶段注意力定位框架的细粒度图像分类方法及系统,属于图像处理技术领域。方法包括:使用两种不同的划分模式处理图像,得到不重叠补丁序列和重叠的补丁序列,并分别对每个序列合并一个类令牌;第一阶段,不重叠补丁序列输入到基于Transformer编码器的特征提取器中以生成注意力分数和一个类令牌;第二阶段整合所有层的注意力分数,通过排序操作识别关键补丁位置,并提取这些位置上的重叠补丁序列作为复用特征提取器的输入,通过保留相邻区域的局部信息,以获取更精细的类令牌和图像特征;最终生成两个阶段的类令牌和最终的图像特征作为训练损失的组成部分。使用该方法便于提高细粒度图像分类精度。

    基于数据分布的分层加权抗噪深度度量学习方法

    公开(公告)号:CN114418013A

    公开(公告)日:2022-04-29

    申请号:CN202210075749.7

    申请日:2022-01-22

    Abstract: 本发明涉及互联网大数据技术领域,具体涉及基于数据分布的分层加权抗噪深度度量学习方法,包括:将随机合成的噪声样本加载到训练数据集中;基于数据间的距离关系刻画数据分布,随着训练进程推进数据分布的记录更新;基于数据分布的分布矩阵,去除每个训练batch中的噪声样本;基于数据分布自适应指导采样策略的学习并完成采样;最小化模型的损失函数以更新模型参数,并同步更新数据分布。本发明的深度度量学习方法能够提高模型的训练准确性和训练鲁棒性,从而能够保证模型的训练效果。

    一种基于多级别网络的图像文本检索方法

    公开(公告)号:CN114357148A

    公开(公告)日:2022-04-15

    申请号:CN202111619401.1

    申请日:2021-12-27

    Inventor: 冯永 杨磊 王永恒

    Abstract: 本发明涉及图像文本检索技术领域,具体涉及一种基于多级别网络的图像文本检索方法,包括:构建具有全局级别子网络、关系级别子网络和数字级别子网络的图文检索模型;构建用于训练图文检索模型的训练数据集,训练数据集中包括图像文本对;将训练数据集中的图像文本对分别输入图文检索模型的全局级别子网络、关系级别子网络和数字级别子网络,以分别生成对应的全局级别相似度、关系级别相似度和数字级别相似度并单独训练对应的子网络;基于训练完成的图文检索模型进行图像文本检索。本发明中的图像文本检索方法能够提升图像文本的检索效率和检索准确性,从而能够提升图像文本检索的效果。

    一种基于图像处理技术的产品表面瑕疵识别方法

    公开(公告)号:CN113516619A

    公开(公告)日:2021-10-19

    申请号:CN202110386182.0

    申请日:2021-04-09

    Abstract: 本发明公开了一种基于图像处理技术的产品表面瑕疵识别方法,首先在产品流水线上设置产品检测点,利用高清摄像机对监测点处的产品进行拍摄,获得产品的图像;其次,基于得到的产品图像,对图片进行灰度操作得到灰度图像;再次次针对灰度图像利用瑕疵点识别算法计算并输出瑕疵点面积和图像上的中心点坐标;最后根据输出值触发激光打标机,对产品进行激光打标签,标识出不合格字样。本发明提出的基于计算机处理的瑕疵识别方法,能够很好的识别出产品表面瑕疵点,而对达到产品质量要求表面光滑的产品不生成误判现象。可以解决工业生产中检验汽车配件是否合格问题,提高工业生产效率,节约成本,并适于推广到工厂流水线产品检测上。

    一种基于迭代决策树的电信用户分类方法

    公开(公告)号:CN108564380B

    公开(公告)日:2021-07-20

    申请号:CN201810321941.3

    申请日:2018-04-11

    Applicant: 重庆大学

    Abstract: 本发明涉及一种基于迭代决策树的电信用户分类方法,包括:S1:根据用户的基本信息、通话、短信记录构建用户社交关系网络G(V,E);S2:从G(V,E)中抽取特征,或根据已分类的用户更新其他用户的特征;S3:用迭代决策树对G(V,E)中未分类的用户分类,即判断是否满足|sFriend‑nFriend|≥L;若满足则分类,将分类的用户数记为κ;K若κ>K,回到步骤S2,否则进入步骤S4;S4:令L=L‑1;若L≥0,返回步骤S2,否则进入步骤S5;S5:输出分类结果。本发明在训练集较少的情况下能达到很低的错误率,可以克服训练集占比高导致的过拟合影响,实现用户的精准定位。

    一种融合Faster-RCNN和Wasserstein自编码器的图像检索方法

    公开(公告)号:CN109086437B

    公开(公告)日:2021-06-01

    申请号:CN201810926656.4

    申请日:2018-08-15

    Abstract: 本发明公开一种融合Faster‑RCNN(Faster‑Regions with Convolutional Neural Network,快速区域卷积神经网络)和Wasserstein自编码器的图像检索方法。本发明搭建深度学习框架,采用Faster‑RCNN模型提取图像特征;对Faster‑RCNN模型进行训练,微调网络权重;提取图像的全局特征,构建图像的全局特征图库;构建Wasserstein自编码器,并对Wasserstein自编码器进行训练;采用Wasserstein自编码器对全局特征进行降维,计算欧几里得距离得出第一相似度,并进行第一次排序,完成图像的粗粒度检索;提取图像中候选区域的特征作为局部特征,构建图像的局部特征图库;采用Wasserstein自编码器对局部特征进行降维,计算第二相似度并进行第二次排序,完成图像的细粒度检索。该方法能加快图像的检索速度以及提高图像检索的准确率。

Patent Agency Ranking