-
公开(公告)号:CN109086437A
公开(公告)日:2018-12-25
申请号:CN201810926656.4
申请日:2018-08-15
Abstract: 本发明公开一种融合Faster-RCNN(Faster-Regions with Convolutional Neural Network,快速区域卷积神经网络)和Wasserstein自编码器的图像检索方法。本发明搭建深度学习框架,采用Faster-RCNN模型提取图像特征;对Faster-RCNN模型进行训练,微调网络权重;提取图像的全局特征,构建图像的全局特征图库;构建Wasserstein自编码器,并对Wasserstein自编码器进行训练;采用Wasserstein自编码器对全局特征进行降维,计算欧几里得距离得出第一相似度,并进行第一次排序,完成图像的粗粒度检索;提取图像中候选区域的特征作为局部特征,构建图像的局部特征图库;采用Wasserstein自编码器对局部特征进行降维,计算第二相似度并进行第二次排序,完成图像的细粒度检索。该方法能加快图像的检索速度以及提高图像检索的准确率。
-
公开(公告)号:CN109086437B
公开(公告)日:2021-06-01
申请号:CN201810926656.4
申请日:2018-08-15
IPC: G06F16/583 , G06F16/51 , G06K9/62 , G06N3/04 , G06N3/08
Abstract: 本发明公开一种融合Faster‑RCNN(Faster‑Regions with Convolutional Neural Network,快速区域卷积神经网络)和Wasserstein自编码器的图像检索方法。本发明搭建深度学习框架,采用Faster‑RCNN模型提取图像特征;对Faster‑RCNN模型进行训练,微调网络权重;提取图像的全局特征,构建图像的全局特征图库;构建Wasserstein自编码器,并对Wasserstein自编码器进行训练;采用Wasserstein自编码器对全局特征进行降维,计算欧几里得距离得出第一相似度,并进行第一次排序,完成图像的粗粒度检索;提取图像中候选区域的特征作为局部特征,构建图像的局部特征图库;采用Wasserstein自编码器对局部特征进行降维,计算第二相似度并进行第二次排序,完成图像的细粒度检索。该方法能加快图像的检索速度以及提高图像检索的准确率。
-