-
公开(公告)号:CN115081437B
公开(公告)日:2022-12-09
申请号:CN202210855918.9
申请日:2022-07-20
Applicant: 中国电子科技集团公司第三十研究所 , 国家计算机网络与信息安全管理中心
IPC: G06F40/279 , G06F40/253 , G06F40/242 , G06F40/216 , G06F40/211 , G06F40/30 , G06F16/33
Abstract: 本发明涉及文本检测技术领域,公开了基于语言学特征对比学习的机器生成文本检测方法及系统,该机器生成文本检测方法,包括以下步骤:S1,预训练模型调整;S2,话语图构建;S3,向量表示计算;S4,文本检测参数更新。本发明解决了现有技术存在的在标注数据有限的情况下自动准确识别网络中的机器生成文本等问题。
-
公开(公告)号:CN114915599B
公开(公告)日:2022-11-11
申请号:CN202210845605.5
申请日:2022-07-19
Applicant: 中国电子科技集团公司第三十研究所 , 国家计算机网络与信息安全管理中心
IPC: H04L47/2483 , H04L47/2441 , G06N3/04 , G06N3/08 , G06K9/62
Abstract: 本发明涉及计算机网络技术领域,公开了一种基于半监督聚类学习的暗网站点会话识别方法及系统,该会话识别方法,利用深度学习CNN算法自动提取Obfs4网桥下暗网站点会话的特征,并利半监督聚类算法对暗网站点的onion地址进行识别。本发明解决了现有技术存在的泛化性不足、识别准确度较低、实用性不足等问题。
-
公开(公告)号:CN111709472B
公开(公告)日:2022-09-23
申请号:CN202010543099.5
申请日:2020-06-15
Applicant: 国家计算机网络与信息安全管理中心 , 杭州东信北邮信息技术有限公司
Abstract: 一种动态融合规则到诈骗行为识别模型的方法,包括:由全量通话记录生成电信通联网络:G={V,E,Y},并据此构建识别诈骗行为的时空图;读取诈骗行为识别规则表中的每条规则,计算每个用户对应于每条规则的转换值;将每个用户对应于规则的转换值构成每个用户的通话特征指标向量,每个用户的通话特征指标向量即是时空图中每个用户的节点特征;构建、并训练诈骗行为识别模型,然后将待识别用户的节点特征输入至诈骗行为识别模型,并根据模型输出判断待识别用户是否是可疑诈骗行为号码。本发明属于信息技术领域,能实现规则和模型的动态融合,从而实时检测、并准确识别各种诈骗行为。
-
公开(公告)号:CN115083422A
公开(公告)日:2022-09-20
申请号:CN202210859678.X
申请日:2022-07-21
Applicant: 中国科学院自动化研究所 , 国家计算机网络与信息安全管理中心
Abstract: 本公开涉及一种语音溯源取证方法及装置、设备及存储介质,所述方法包括:本提取待测试语音的至少两种不同的声学特征;对提取的待测试语音的至少两种不同的声学特征进行融合,得到第一融合声学特征;基于预先训练的语音溯源取证模型,从所述第一融合声学特征中提取帧级别的算法指纹特征,对帧级别的算法指纹特征进行池化平均,根据池化平均得到的特征加权平均向量和加权标准差向量计算段级别的算法指纹特征,以基于段级别的算法指纹特征预测出待测试语音的生成算法;将预测出的待测试语音的生成算法作为语音溯源取证结果,通过提取算法指纹,不仅可以判断音频的真实性,而且可以进一步溯源取证,得到虚假音频的生成来源。
-
公开(公告)号:CN114936723A
公开(公告)日:2022-08-23
申请号:CN202210856300.4
申请日:2022-07-21
Applicant: 中国电子科技集团公司第三十研究所 , 国家计算机网络与信息安全管理中心
Abstract: 本发明涉及数据挖掘技术领域,公开了一种基于数据增强的社交网络用户属性预测方法及系统,该属性预测方法,基于用户的历史行为序列,推断用户未来一段时间的行为序列,通过将历史行为序列与预测得到的行为序列进行拼接,扩大行为序列的长度,对用户的行为数据进行增强。本发明解决了现有技术存在的线网络用户行为序列长度较短时不能为用户属性预测任务提供足够信息、从而导致用户属性预测的预测准确性低的问题。
-
公开(公告)号:CN109600752B
公开(公告)日:2022-01-14
申请号:CN201811433091.2
申请日:2018-11-28
Applicant: 国家计算机网络与信息安全管理中心 , 北京邮电大学
IPC: H04W12/128 , H04M3/22 , G06K9/62
Abstract: 本申请公开了一种深度聚类的诈骗通话检测方法,包括:对所有话单数据进行深度聚类形成多个簇,将所述多个簇与诈骗簇的指标值进行比较,将与所述指标值匹配度最高的簇作为诈骗簇;获取所述诈骗簇中的主叫号码呼叫过的各被叫号码,根据话单数据确定呼叫过所述各被叫号码的所有主叫号码,利用所述各被叫号码和所述所有主叫号码进行复杂网络建模;在建模的复杂网络中,进行社区发现,并根据各社区包含所述诈骗簇中主叫号码的比例,确定诈骗高风险社区;对所述诈骗高风险社区中的各次通话进行语音识别,根据语音识别结果进行诈骗电话的判决和分类。应用本申请,能够在保证实时性的基础上能够更准确的发现诈骗通话。
-
公开(公告)号:CN113645356A
公开(公告)日:2021-11-12
申请号:CN202010343481.1
申请日:2020-04-27
Applicant: 国家计算机网络与信息安全管理中心 , 天津市国瑞数码安全系统股份有限公司
Abstract: 本发明提出一种基于网内开卡行为分析的诈骗电话识别方法,包括:收集诈骗电话和普通电话的开卡行为数据,并提取诈骗电话和普通电话的特征向量;使用诈骗电话和普通电话的特征向量进行诈骗电话模型训练,生成诈骗电话判断模型;接收新电话的开卡行为数据,并提取新电话的特征向量;使用诈骗电话判断模型对新电话的特征向量进行分析,对新电话进行判断。本发明针对诈骗电话手段不断变化,采用大数据分析历史诈骗电话和普通电话的相关数据,使用“GBDT‑LSTM‑RF”的深度学习模型架构,构建诈骗电话判断模型,通过自学习技术学习到网内开卡时序特征,并将多类特征进行融合,从而可以发现诈骗电话;本发明还可以自更新,可以有效发现新型诈骗电话。
-
公开(公告)号:CN113420123A
公开(公告)日:2021-09-21
申请号:CN202110705729.9
申请日:2021-06-24
Applicant: 中国科学院声学研究所 , 国家计算机网络与信息安全管理中心
IPC: G06F16/33 , G06F16/332 , G06K9/62 , G06N3/02
Abstract: 本申请提供了一种语言模型的训练方法、NLP任务处理方法及装置,包括:获取训练样本集;训练样本集包括新任务的第一任务标签、新任务的多个第一训练文本和每个第一训练文本的第一文本标签、至少一个旧任务中每个旧任务的第二任务标签;复制语言模型得到教师语言模型,将语言模型作为学生语言模型;将第二任务标签输入至教师语言模型中,生成旧任务对应的多个第二训练文本和每个第二训练文本的第二文本标签;将第一任务标签、第二任务标签、第一训练文本和第二训练文本输入至学生语言模型中,生成第一预测文本、第一预测结果、第二预测文本和第二预测结果,对学生语言模型进行训练。根据本申请实施例,能够解决相关技术中存储资源占用大的问题。
-
公开(公告)号:CN113420121A
公开(公告)日:2021-09-21
申请号:CN202110704938.1
申请日:2021-06-24
Applicant: 中国科学院声学研究所 , 国家计算机网络与信息安全管理中心
IPC: G06F16/33 , G06F16/332 , G06F16/951 , G06K9/62
Abstract: 本申请提供了一种文本处理模型训练方法、语音文本处理方法及装置,涉及自然语言处理技术领域。该方法包括:从互联网爬取对话文本,得到正样本;对对话文本中的语句进行变换操作,得到负样本和负样本的第一标签信息;将正样本和负样本对应输入至预先训练的第一文本处理模型中和待训练的第二文本处理模型中,生成第一文本处理模型的目标层的第一特征向量和第二文本处理模型的目标层的第二特征向量;根据第一特征向量、第二特征向量,对第二文本处理模型进行知识蒸馏,得到训练好的第二文本处理模型。根据本申请实施例,能够解决相关技术中对语音文本进行校对效率低、耗时长且计算资源占用大的问题。
-
公开(公告)号:CN113420112A
公开(公告)日:2021-09-21
申请号:CN202110685518.3
申请日:2021-06-21
Applicant: 中国科学院声学研究所 , 国家计算机网络与信息安全管理中心
IPC: G06F16/33 , G06F40/289 , G06K9/62
Abstract: 本发明涉及一种基于无监督学习的新闻实体分析方法及装置。方法包括:对待处理的多条新闻数据中的每条新闻数据分别进行分词处理,将分词处理后的每条新闻中包含的多个实体进行标注以得到标注结果;基于所述标注结果构建分布式表示模型,得到所述多个实体的分布式表示信息,所述分布式表示信息标识为实体向量;根据所述多个实体的分布式表示信息,对所述多个实体进行聚类分析以得到聚类结果。本申请将分布式的思想引入新闻实体的处理当中,通过新闻实体所处位置的上下文来得到实体的分布式表示,通过对实体的聚类分析来得到实体的聚类结果。
-
-
-
-
-
-
-
-
-