-
公开(公告)号:CN112967242B
公开(公告)日:2023-07-04
申请号:CN202110218843.9
申请日:2021-02-26
Applicant: 北京信息科技大学
IPC: G06T7/00 , G06V10/764 , G06V10/774
Abstract: 本发明公开了一种基于视觉特征聚合的光场质量评价方法,该方法包括:步骤1,获取光场数据集;步骤2,提取每一四维光场的视觉特征,得到每个四维光场的视觉聚合特征;视觉特征为四维光场的中心子孔径图像的特征向量LFCV、宏像素图上的特征向量LFMLI、极平面图像上的灰度共生矩阵特征向量LFEPI、以及不同重聚焦面上重聚焦图的特征向量LFRI中的一种或一种以上的组合;LFCV用于描述光场在空间清晰度上质量变化情况,LFMLI用于描述光场在角度域一致性退化情况,LFEPI用于描述光场在空‑角耦合域上结构变化情况,LFRI用于描述光场在投影域上的质量变化情况;步骤3,根据所述视觉聚合特征,使用支持向量回归训练得到光场质量分数评测模型;步骤4,通过光场质量分数评测模型评价光场的质量分数。本发明计算得到的光场质量客观评价分数与主观评价分数有较高的一致性。
-
公开(公告)号:CN111932601B
公开(公告)日:2023-06-06
申请号:CN202010766902.1
申请日:2020-08-03
Abstract: 本发明公开了一种基于YCbCr颜色空间光场数据的稠密深度重建方法,该方法包括以下步骤:步骤1,获取YCbCr颜色空间光场数据;步骤2,在Y通道标记平滑区域;步骤3,在CbCr通道进行语义分割;步骤4,在Y通道进行区域匹配;步骤5,优化匹配视差,并计算场景深度。通过采用本发明提供的方法,能够在四维光场理论下实现高精度的深度重建。
-
公开(公告)号:CN107945221B
公开(公告)日:2021-06-11
申请号:CN201711293626.6
申请日:2017-12-08
Applicant: 北京信息科技大学
IPC: G06T7/33
Abstract: 本发明公开了一种基于RGB‑D图像的三维场景特征表达与高精度匹配方法,利用透视投影模型和尺度空间理论,检测并提取RGB‑D图像的三维特征点;利用圆的旋转不变性,为每一个特征点选定以其为圆心的四个同心圆区域为此特征点所需的特征描述区域;在每个圆环区域以及最里面的中心圆区域内分别计算像素点的梯度模值和方向,建立方向直方图,其中,“圆环区域”为相邻的两同心圆之间的环形区域;利用方向直方图,建立环形描述子,对每一个特征点进行特征描述,生成特征向量,并根据特征向量间的欧式距离匹配特征点。通过采用本发明提供的方法,对RGB‑D图像进行三维特征表达与匹配,避免了主方向的分配、降低特征向量的维数,为后续特征匹配降低了计算量、节省了时间,实现特征匹配的实时性。
-
公开(公告)号:CN106875436B
公开(公告)日:2019-10-22
申请号:CN201710090688.0
申请日:2017-02-20
Applicant: 北京信息科技大学
IPC: G06T7/55
Abstract: 本发明公开了一种基于特征点密度由聚焦堆栈估计深度的方法和装置,所述方法包括:提取聚焦堆栈中每个图像的特征点,建立基于特征点密度的聚焦测度;建立引入特征点密度的加权聚焦测度的估计深度的模型:以采用SML聚焦测度为例,建立SML与特征点密度的加权线性混合聚焦测度作为深度估计的目标函数,实现对场景深度的估计和全聚焦图。本发明的方案,建立关于特征点密度的聚焦测度及建立线性加权聚焦测度,并构建基于聚焦测度的深度估计模型,获取场景的深度信息,以实现场景的全聚焦与三维重构,可为现实三维重构提供精确的深度信息并获取全聚焦图像。
-
公开(公告)号:CN106846469A
公开(公告)日:2017-06-13
申请号:CN201710091014.2
申请日:2017-02-20
Applicant: 北京信息科技大学
IPC: G06T17/00
Abstract: 本发明公开了一种基于特征点追踪由聚焦堆栈重构三维场景的方法和装置,包括:建立由三维场景生成聚焦堆栈的正演模型,给出三维场景特征点与聚焦堆栈的几何关系;提取聚焦堆栈中每个图像的特征点,追踪匹配成功的特征点的坐标,得到特征点在聚焦堆栈中的轨迹;建立由聚焦堆栈重构三维场景的反演模型:由匹配成功的特征点,建立关于特征点三维坐标的方程组,通过求解方程组得到特征点的三维坐标,重构三维场景,并实现三维几何测量。本发明的聚焦堆栈是将探测器固定,通过沿光轴移动透镜完成聚焦堆栈的采集,采用本发明的方案,能够实现相机拍摄视角下的三维重构,可以为虚拟现实和几何测量提供精确的三维结构信息。
-
公开(公告)号:CN119151783A
公开(公告)日:2024-12-17
申请号:CN202410944662.8
申请日:2024-07-15
Applicant: 北京信息科技大学
IPC: G06T3/4053 , G06T3/4046 , G06T7/00 , G06N3/0455 , G06N3/088
Abstract: 本发明涉及一种基于条件VAE模型的光场角度超分辨方法,属于计算成像、机器视觉与数字图像处理技术领域,包括如下步骤:通过采集视点平面等间隔稀疏的光场子孔径图像阵列LFγ和中心子孔径图像LF0分别输入视差估计模块(P)和特征提取模块(F),获得场景初始视差图和不同层级的中心子孔径特征;本发明可以不依赖大规模的高分辨率训练数据集,可对全部光场子孔径图像同步做角度域的超分辨重构,设计一种基于光场数据的空角一致性混合损失函数,使新模型在重构角度高分辨率的子孔径图像时能够利用耦合在子孔径图像种的视差信息,在合成和真实数据集上数值实验结果接近有监督方法,同时能够满足基于深度学习的方法对光场角度域的超分辨。
-
公开(公告)号:CN117639099A
公开(公告)日:2024-03-01
申请号:CN202311615130.1
申请日:2023-11-29
Applicant: 国网吉林省电力有限公司电力科学研究院 , 北京信息科技大学 , 吉林省电力科学研究院有限公司
Abstract: 本发明属于光伏发电技术领域,具体涉及一种多目标优化器的高渗透率光伏配电台区优化运行方法。本方法包括:定义待优化的光伏配电台区的目标函数、决策变量和约束条件;设计多目标优化器:随机产生初始种群,对当前种群进行非支配排序后,使用基于参考点临界层中的环境选择方法进一步筛选出更优的种群进入下一代,依据搜索机制更新下一代种群新的位置,计算当前所有种群个数的目标函数值,重复操作直至到达最大迭代次数,使用熵权法从Pareto解集中选择最终种群,输出当前种群和目标函数的结果。该方法对高维非线性的含高渗透率的配电台区优化运行问题具有更强的求解能力和更快的求解速度,且多目标优化器的应用方法更方便,适应性更强。
-
公开(公告)号:CN111932648B
公开(公告)日:2023-05-12
申请号:CN202010766903.6
申请日:2020-08-03
Abstract: 本发明公开了一种由螺旋采样光场数据重建三维物体的方法,其包括:步骤1,将螺旋采样光场数据表示为Ls(x,y,Φ):相机采集到的光场数据为螺旋采样光场数据,s表示螺距,为螺旋角度,表示在第k层下的旋转角度,x、y分别为相机的探测器平面在世界坐标系中的横、纵坐标;步骤2,建立物点在螺旋采样光场下的理想轨迹方程;步骤3,进行亚光圈区域匹配,追踪匹配点在螺旋采样光场数据中的轨迹;步骤4,对轨迹进行参数拟合,得到匹配点的三维坐标,重构三维物体。本发明方法能够实现高精度的物体三维表面重构,由于与螺旋CT数据采集模式相匹配,可与螺旋CT一起构成同时重构物体表面和内部结构信息的双模态成像系统。
-
公开(公告)号:CN114626476A
公开(公告)日:2022-06-14
申请号:CN202210279684.8
申请日:2022-03-21
Applicant: 北京信息科技大学
IPC: G06K9/62 , G06V10/764 , G06V10/774 , G06V10/80 , G06V10/82 , G06N3/04 , G06N3/08
Abstract: 本发明公开了一种基于Transformer和部件特征融合的鸟类细粒度图像识别方法及装置,该方法包括:步骤1,通过将预处理后的图像输入基于Transformer架构网络的特征编码器,提取出基础特征图,并将所述基础特征图输入注意力模块,生成部件注意力图;步骤2,将所述基础特征图和所述部件注意力图进行双线性注意力池化操作,获得判别性部件特征;步骤3,通过将判别性部件特征在通道维度上进行拼接,得到融合了判别性部件信息的增强特征表示;步骤4,通过将增强特征表示输入全连接层,完成类别的映射,并通过交叉熵损失和中心损失对模型参数进行优化。本发明能够实现在弱监督下对鸟类图像进行高精度识别。
-
公开(公告)号:CN109325981B
公开(公告)日:2020-10-02
申请号:CN201811070094.4
申请日:2018-09-13
Applicant: 北京信息科技大学
IPC: G06T7/80
Abstract: 本发明公开了一种基于聚焦像点的微透镜阵列型光场相机几何参数标定方法,该方法包括以下步骤:S1,根据微透镜阵列型光场相机的聚焦成像光路图,得到物点与聚焦像点关于主透镜的映射关系;S2,根据微透镜阵列型光场相机的聚焦成像光路图,得到聚焦像点与探测器像点关于微透镜的映射关系;S3,根据检测得到的探测器像点,求解聚焦像点的坐标;S4,根据S3获得的聚焦像点的坐标,求解标定模型中的相机内部参数矩阵和外部参数矩;S5,通过S4获得的相机内部参数矩阵和外部参数矩阵,标定微透镜阵列型光场相机的几何参数。通过采用本发明提供的方法,进行微透镜阵列型光场相机的几何参数标定,可以为后续光场数据校准和实现计算成像提供可靠的参数。
-
-
-
-
-
-
-
-
-