一种基于文本分类的中文表格列标签恢复方法和系统

    公开(公告)号:CN109710725A

    公开(公告)日:2019-05-03

    申请号:CN201811524302.3

    申请日:2018-12-13

    Abstract: 本发明涉及一种基于文本分类的中文表格列标签恢复方法和系统。该方法的步骤包括:1)从表格中的每一行中提取实体,在网络百科知识平台中搜索提取的实体,获取实体对应的信息详情页面;2)对实体的每一个属性,在实体的信息详情页面中抽取包含属性值的句子,组成属性值的相关文本;3)将属性值的相关文本输入文本分类器中,获取属性值所属的类别,即为属性值所在单元格的类别;4)对于表格的属性列,根据属性列中各单元格所属的类别,使用多数投票的规则确定该属性列的列标签。本发明能够有效的对网络表格进行列标签恢复,恢复列标签后的表格可用于中文知识图谱的构建和扩展,也可用于数据抽取和表格搜索等应用。

    一种基于卷积神经网络的用户属性推断方法和装置

    公开(公告)号:CN108492200A

    公开(公告)日:2018-09-04

    申请号:CN201810124041.X

    申请日:2018-02-07

    Abstract: 本发明涉及一种基于卷积神经网络的用户属性推断方法和装置。该方法根据用户节点的属性和好友关系,建立自中心网络;然后采用卷积神经网络提取所述自中心网络中用户节点的属性信息和好友关系中所包含的隐藏信息,利用所述隐藏信息推断出用户的缺失属性。针对好友关系无法直接获取或获取难度较大的社交网络,采用神经网络仅利用用户的属性信息对缺失的属性进行分类预测。本发明可以很好的避免人为定义相似度函数的局限性,而且通过卷积核的卷积操作能够更好的表现出不同属性间以及不同的属性维度间的关系,从而能够高效、准确地进行用户缺失属性推断。

    一种基于多视图蒸馏增强的实体链接方法

    公开(公告)号:CN118760772B

    公开(公告)日:2025-04-01

    申请号:CN202410736212.X

    申请日:2024-06-07

    Abstract: 本发明公开了一种基于多视图蒸馏增强的实体链接方法。本方法包括:1)多视图实体表征:将每个实体原本篇章级的文本描述分成多个句子级的视图,对每一视图独立地经过语言模型进行编码,得到每一句子视图对应的向量表征;从中选择一个和提及最相关的视图的向量表征作为实体的向量表征,以避免与提及无关的信息被引入到实体表征中;2)多视图蒸馏增强:在引入了细粒度的视图表征后,通过交叉对齐和自对齐机制,分别在原始的实体层次以及细粒度的视图层次两个维度上对齐学生模型和教师模型间的相关性分数分布,从而促进教师模型到学生模型的细粒度知识蒸馏。本发明促进了实体链接系统的整体性能的提升。

    一种基于分层迭代的长文本抽取式摘要生成方法和装置

    公开(公告)号:CN118332101A

    公开(公告)日:2024-07-12

    申请号:CN202410400400.5

    申请日:2024-04-03

    Abstract: 本发明属于文本信息抽取领域,涉及一种基于分层迭代的长文本抽取式摘要生成方法和装置。该方法包括:获取文本中字符的词向量、位置向量以及结构子标题向量,将其相加作为语义编码的输入,采用长文本预训练语言模型作为语义编码器,进行语义编码;将语义编码之后的向量送入各个层级编码器中,将语义信息沿着文本结构路线由句子层级至文档层级进行分层传递,然后从文档层级至句子层级再次进行分层传递,实现迭代更新,得到各个层级的隐层表示;通过融合各个层级的隐层表示全面地对每个句子进行评价,选出最优的摘要句。本发明能够克服现有抽取式摘要面向长文本时计算资源消耗大,存在语义损失以及长文本结构建模缺失的问题。

    基于异质图自监督学习的恶意域名检测方法及装置

    公开(公告)号:CN116886327A

    公开(公告)日:2023-10-13

    申请号:CN202310469489.6

    申请日:2023-04-27

    Abstract: 本发明公开了一种基于异质图自监督学习的恶意域名检测方法和系统。所述方法包括:将DNS场景建模为一个原始异质图;其中,所述原始异质图中的节点包括:域名、客户端和IP地址;在数据层面上引入轻微的扰动来生成所述原始异质图的轻微扰动图;根据域名级的对比损失和图级的相似性损失,获取所述原始异质图中域名的节点表示;其中,所述域名级的对比损失是对原始异质图和轻微扰动图中域名的节点表示进行相似性对比得到,所述图级的相似性损失是对原始异质图和轻微扰动图的图嵌入表示进行相似性对比得到;基于所述原始异质图中域名的节点表示,得到所述DNS场景的恶意域名检测结果。本发明可以在域名标签稀疏的困境下解决恶意域名模型过拟合的问题。

    一种基于卷积神经网络的面向智能专家推荐的用户画像方法

    公开(公告)号:CN111581368A

    公开(公告)日:2020-08-25

    申请号:CN201910121716.X

    申请日:2019-02-19

    Abstract: 本发明公开了一种基于卷积神经网络的面向智能专家推荐的用户画像方法。本方法为:1)利用选定的专家个人信息,获取一专家信息数据集;2)对该专家信息数据集中的每一条专家信息处理为一个由词语序列构建而成的句子;3)将使用词向量对步骤2)处理后的专家信息进行文本表示;4)将专家信息对应的词向量训练卷积神经网络;5)根据待构建画像专家的文本信息生成该待构建画像专家的词向量,利用训练后的卷积神经网络对该待构建画像专家的词向量进行分类,生成该待构建画像专家的用户画像。本发明勾画用户画像准确性高。

    一种基于生成对抗网络的中文摘要生成方法和装置

    公开(公告)号:CN109766432A

    公开(公告)日:2019-05-17

    申请号:CN201810765723.9

    申请日:2018-07-12

    Abstract: 本发明涉及一种基于生成对抗网络的中文摘要生成方法和装置。该方法包括:1)通过对给定的中文数据集进行预处理操作形成训练集;2)构建基于生成对抗网络的中文摘要生成模型,并使用训练集对中文摘要生成模型进行训练;3)将待生成摘要的中文文本输入到训练完毕的中文摘要生成模型,得到对应的摘要。本发明使用判别器最小化误差来代替最大生成摘要概率的框架;特别设计了由3个LSTMs组成的判别器,能够更好地捕获特征,辅助分类效果;提出使用以字为单位结合上下文,能够有效提升文本摘要的效率。本发明能够对大规模中文文本进行摘要的自动生成,生成的摘要更自然、连贯,具有可读性。

    一种基于微博的事件实时监测方法及系统

    公开(公告)号:CN103955505B

    公开(公告)日:2017-09-26

    申请号:CN201410168703.5

    申请日:2014-04-24

    Abstract: 本发明涉及一种基于微博的事件实时监测方法及系统,所述方法包括:异常事件检测步骤,输入事件关键词,统计与事件关键词相关的微博数量,采用波峰识别方法将统计的微博数量以曲线图展示,将曲线图中的波峰时间作为事件的异常时间点,将存在异常时间点的事件作为异常事件;地理位置定位步骤,在与异常事件相关的微博文本内容中,抽取出地理位置实体,并采用聚类方法从抽取的地理位置实体中筛选出异常事件发生的地理位置。此外,还包括有相关事件推荐步骤和/或事件相关度分析步骤。本发明对用户所关心的事件进行实时监测,监控该事件在微博平台上的传播和发展趋势,能精准地挖掘出事件发生的异常时间点和地理位置,并推荐给用户其感兴趣的话题。

    一种基于微博的事件实时监测方法及系统

    公开(公告)号:CN103955505A

    公开(公告)日:2014-07-30

    申请号:CN201410168703.5

    申请日:2014-04-24

    CPC classification number: G06F17/30616 G06F17/30702

    Abstract: 本发明涉及一种基于微博的事件实时监测方法及系统,所述方法包括:异常事件检测步骤,输入事件关键词,统计与事件关键词相关的微博数量,采用波峰识别方法将统计的微博数量以曲线图展示,将曲线图中的波峰时间作为事件的异常时间点,将存在异常时间点的事件作为异常事件;地理位置定位步骤,在与异常事件相关的微博文本内容中,抽取出地理位置实体,并采用聚类方法从抽取的地理位置实体中筛选出异常事件发生的地理位置。此外,还包括有相关事件推荐步骤和/或事件相关度分析步骤。本发明对用户所关心的事件进行实时监测,监控该事件在微博平台上的传播和发展趋势,能精准地挖掘出事件发生的异常时间点和地理位置,并推荐给用户其感兴趣的话题。

Patent Agency Ranking