-
公开(公告)号:CN108504909A
公开(公告)日:2018-09-07
申请号:CN201810344888.9
申请日:2018-04-17
Applicant: 哈尔滨工业大学
Abstract: 一种铝基复合屏蔽材料及其制备方法,本发明属于核辐射防护复合材料制备及应用的技术领域,具体涉及一种铝基复合屏蔽材料及其制备方法。本发明是要解决现有核辐射、射线防护材料屏蔽性能单一的问题。一种铝基复合屏蔽材料按体积分数由1%~50%单质硼、1%~50%单质钨和1~99%含铝材料制成。方法:一、称量;二、混粉;三、过筛、烘干;四、冷压成型;五、放电等离子烧结、脱模。本发明的复合屏蔽材料具有优异的X、γ射线以及中子综合屏蔽性能,致密度高,力学性能和加工性能好;材料制备方法烧结温度低,烧结时间短,高效节能简便。本发明的铝基复合屏蔽材料用于核辐射防护。
-
公开(公告)号:CN108409359A
公开(公告)日:2018-08-17
申请号:CN201810258596.3
申请日:2018-03-27
Applicant: 哈尔滨工业大学
IPC: C04B41/88
CPC classification number: C04B41/5155 , C04B41/009 , C04B41/88 , C04B35/83 , C04B35/522 , C04B41/4525 , C04B41/5096 , C04B41/5094
Abstract: 一种耐烧蚀三元耗散剂及应用,本发明属于轻质耐烧蚀耗散防热复合材料领域,具体涉及一种耐烧蚀耗散剂及应用。目的是解决耗散防热复合材料基体中耗散剂含量低以及线烧蚀率高的问题。耗散剂合金体系包括铝、硅和硼,该三元耗散剂应用于耗散防热复合材料,应用方法:一、配制耗散剂;二、处理基体材料;三、处理石墨坩埚;四、真空气压浸渗。本发明是基于耗散防热机理,提供一种新型的三元耗散剂,能够在高温、高压和高速粒子流冲刷条件下能形成热耗散和氧耗散的液态陶瓷保护层,制备的轻质耐烧蚀的耗散防热复合材料用于制造固体火箭发动机喷管的喉衬、燃气舵、制造高超音速飞行器的端头帽、翼前缘、尾舵和导弹的转向孔板构件。
-
公开(公告)号:CN107058787A
公开(公告)日:2017-08-18
申请号:CN201710311753.8
申请日:2017-05-05
Applicant: 哈尔滨工业大学
CPC classification number: C22C1/1015 , C22C1/1036 , C22C21/00 , C22C2001/1073 , C22F1/04
Abstract: 一种以石墨微片为原材料制备石墨烯增强铝基复合材料的方法,涉及一种制备铝基复合材料的方法。本发明为了解决目前石墨烯增强铝基复合材料成本高、复合材料铸造件性能差以及石墨烯片层打开不充分的问题。制备方法:一、称料;二、石墨微片分散与预制块成型;三、铝金属真空渗;四、大塑性变形处理;五、成分均匀化处理。本发明以低成本石墨微片为原材料,首先制备石墨微片增强铝基复合材料,制备的少层石墨烯增强铝基复合材料的综合性能优异,弹性模量超过90GPa,抗拉强度超过400MPa,热导率超过230W/(m·K)。本发明适用于制备石墨烯增强铝基复合材料。
-
公开(公告)号:CN104313385B
公开(公告)日:2016-08-24
申请号:CN201410675482.0
申请日:2014-11-21
Applicant: 哈尔滨工业大学
Abstract: 超高导热金刚石/铝复合材料及其制备方法,它涉及一种复合材料及其制备方法。本发明为了解决现有方法制备的金刚石/铝复合材料热导率低、界面结合强度差的技术问题,超高导热金刚石/铝复合材料由增强体和基体合金组成,制备方法如下:将单晶金刚石颗粒装填于石墨模具的型腔内并预热,将熔融铝或铝合金浇注到石墨模具内;加压浸渗,然后冷却,脱模,即得。本发明的金刚石/铝复合材料界面结合好,具有轻质、高导热、热膨胀系数可设计等优点。本发明方法制备的超高导热金刚石/铝复合材料中增强体的体积分数可达55~70%,热导率可达670W/(m·K),热扩散率可达3.0cm2/s。本发明属于复合材料的制备领域。
-
公开(公告)号:CN104400247B
公开(公告)日:2016-05-11
申请号:CN201410512972.9
申请日:2014-09-29
Applicant: 哈尔滨工业大学
Abstract: 一种高导热石墨烯--Sn-Ag系复合钎料的制备方法,它涉及一种高导热复合钎料的制备方法。本发明目的在于通过石墨烯镀金属,降低石墨烯和Sn-Ag系钎料基体间较大的密度差,从而解决复合钎料在制备和使用过程中石墨烯上浮和团聚的问题,同时使石墨烯在钎料基体中分散更加均匀,并且通过石墨烯的加入,提高了复合钎料的导热率,从而提高封装及钎焊的可靠性。本发明方法:一、石墨烯镀金属;二、镀金属石墨烯和Sn-Ag系钎料球磨混合,中温熔炼,得到高导热复合钎料。本发明制备的复合钎料导热率高、同时具有比现有Sn-Ag系钎料更高润湿性,作为现在大规模集成电路的连接材料,是一种符合现在电子工业发展趋势的复合钎料。
-
公开(公告)号:CN103276325B
公开(公告)日:2015-01-21
申请号:CN201310226705.0
申请日:2013-06-07
Applicant: 哈尔滨工业大学
IPC: C22C49/06 , C22C49/14 , C22C47/12 , C22C101/10
Abstract: 一种应用于星载雷达天线面板的各向异性复合材料的制备方法。它涉及应用于星载雷达天线面板的复合材料的制备方法。本发明为解决现有应用于星载雷达天线面板的复合材料不能兼顾横向拉伸强度和纵向拉伸强度、综合力学性能差以及致密度不高的问题,方法:先将氮化铝悬浮液涂覆到纤维表面,再固定成束,然后注入铝合金溶液进行浸渗,最后通过喷射冷却液使其快速冷却,得到复合材料。致密度高,在保持高的纵向拉伸强度和纵向热导率的同时,提高了横向拉伸强度和横向热导率,综合性能优异,可应用于星载雷达天线面板及其制备领域。
-
公开(公告)号:CN103276325A
公开(公告)日:2013-09-04
申请号:CN201310226705.0
申请日:2013-06-07
Applicant: 哈尔滨工业大学
IPC: C22C49/06 , C22C49/14 , C22C47/12 , C22C101/10
Abstract: 一种应用于星载雷达天线面板的各向异性复合材料及其制备方法。它涉及应用于星载雷达天线面板的复合材料及其制备方法。本发明为解决现有应用于星载雷达天线面板的复合材料不能兼顾横向拉伸强度和纵向拉伸强度、综合力学性能差以及致密度不高的问题,该复合材料按质量分数由60%~80%的沥青基石墨纤维增强体、4%~6%的氮化铝颗粒和余量为基体铝合金制成。方法:先将氮化铝悬浮液涂覆到纤维表面,再固定成束,然后注入铝合金溶液进行浸渗,最后通过喷射冷却液使其快速冷却,得到复合材料。致密度高,在保持高的纵向拉伸强度和纵向热导率的同时,提高了横向拉伸强度和横向热导率,综合性能优异,可应用于星载雷达天线面板及其制备领域。
-
公开(公告)号:CN101597726A
公开(公告)日:2009-12-09
申请号:CN200910072235.0
申请日:2009-06-10
Applicant: 哈尔滨工业大学
Abstract: 一种Ti-Al系金属间化合物的增韧方法,它涉及一种金属间化合物的增韧方法。本发明解决了现有Ti-Al系金属间化合物脆性大、制备工艺复杂、成本高、以及利用长纤维增强金属间化合物存在纤维增强体和Ti-Al基体界面易生成脆性界面产物而降低性能的问题。方法:配制Ti粉或Ti-Al化合物粉末浆料;制预制件;将铝液或铝合金液用加压浸渗法或真空吸铸法浸渗到预制件中;在真空或惰性气氛保护下,将铸态复合材料加热处理,即得增韧的Ti-Al系金属间化合物。本发明工艺简单、成本低,纤维和基体的界面结合良好,且纤维和基体界面的产物也为Ti-Al系金属间化合物,材料的韧性好,脆性小。
-
公开(公告)号:CN101260488A
公开(公告)日:2008-09-10
申请号:CN200810064326.5
申请日:2008-04-18
Applicant: 哈尔滨工业大学
Abstract: 一种氮化硅陶瓷颗粒增强铝基复合材料及其制备方法,它涉及一种铝基复合材料及其制备方法。它解决了现有技术中制备氮化硅增强铝基复合材料的工艺复杂、成本高、设备要求高、可用铝合金种类很少、需添加助烧剂及产品整体性能差的问题。本发明氮化硅陶瓷颗粒增强铝基复合材料由氮化硅陶瓷粉体及铝或铝合金制成。制备方法如下:一、将氮化硅陶瓷粉体装入模具,制成预制块;二、将铝或铝合金加热至熔化,然后浇注到预热后的模具中,施加压力至模具自然冷却,再脱模,即得氮化硅陶瓷颗粒增强铝基复合材料。本发明制备工艺简单、成本低,设备简单,适用于所有型号铝合金,制备过程中不需要添加助烧剂,所得复合材料的整体性能优异。
-
公开(公告)号:CN117532002A
公开(公告)日:2024-02-09
申请号:CN202311522400.4
申请日:2023-11-15
Applicant: 哈尔滨工业大学
Abstract: 一种高热导率高表面光洁度薄片状金刚石金属基复合材料的制备方法,涉及一种金刚石金属基复合材料的制备方法。为了解决现有的高热导率薄片状金刚石金属基复合材料难以加工的问题。本发明通过铺层过程调控单晶金刚石颗粒的排列方向,从而为后续精密研磨抛光提供良好的表面状态,能够达到较高的表面光洁度。所得的金刚石金属基复合材料的上下表面为特定厚度的金属层,易于加工,为后续加工、成型、精密研磨、电镀及焊接提供了便利条件。并且由于工艺方法的改进,所得金刚石金属基复合材料的整体热导率较高,而且工艺简单。制备周期短。
-
-
-
-
-
-
-
-
-