城轨供电系统的数字孪生仿真的数据计算方法、系统

    公开(公告)号:CN112906299B

    公开(公告)日:2023-10-13

    申请号:CN202110167112.6

    申请日:2021-02-05

    Abstract: 本发明实施例提供了一种城市轨道交通供电系统数字孪生仿真的数据计算方法、系统。所述方法包括:步骤1,采集牵引供电系统的负荷及潮流状态的真实数据;步骤2,采用数据驱动与模型驱动的混合驱动方式,根据所述负荷和所述真实数据,对牵引供电系统模型进行潮流仿真,生成潮流状态的仿真结果;步骤3,根据所述潮流状态的仿真结果和所述真实数据,生成模型的误差指标ModelError;步骤4,判断所述误差指标ModelError是否大于预设阈值,生成比较结果;步骤5,当所述比较结果为是时,输出所述牵引供电系统模型;步骤6,否则,对所述牵引供电系统模型进行参数自动校正,生成更新的所述牵引供电系统模型,转到所述步骤1。本发明能够提高模型的精度。

    一种基于数字孪生技术的钢轨电位限制方法和装置

    公开(公告)号:CN112960015A

    公开(公告)日:2021-06-15

    申请号:CN202110159371.4

    申请日:2021-02-05

    Abstract: 本发明实施例提供了一种基于数字孪生技术的钢轨电位限制方法和装置。所述方法,包括:步骤1,采集城市轨道交通真实回流系统的运行状态数据,并建立所述真实回流系统的机理模型;步骤2,基于所述机理模型,生成所述真实回流系统的数字孪生模型;所述机理模型为所述真实回流系统的电网络及微分等效模型;步骤3,计算全线各位置的钢轨电位的分布情况;步骤4,根据所述钢轨电位的分布情况,模拟不同OVPD动作时带来的后果,确定以OVPD动作数量最少、轨道电压限制后下降最明显为目标的最优OVPD动作策略;步骤5,将制定的所述最优OVPD动作策略作用于城市轨道交通的真实线路,以控制所述真实线路中的各牵引所OVPD的动作。

    城轨供电系统的数字孪生仿真的数据计算方法、系统

    公开(公告)号:CN112906299A

    公开(公告)日:2021-06-04

    申请号:CN202110167112.6

    申请日:2021-02-05

    Abstract: 本发明实施例提供了一种城市轨道交通供电系统数字孪生仿真的数据计算方法、系统。所述方法包括:步骤1,采集牵引供电系统的负荷及潮流状态的真实数据;步骤2,采用数据驱动与模型驱动的混合驱动方式,根据所述负荷和所述真实数据,对牵引供电系统模型进行潮流仿真,生成潮流状态的仿真结果;步骤3,根据所述潮流状态的仿真结果和所述真实数据,生成模型的误差指标ModelError;步骤4,判断所述误差指标ModelError是否大于预设阈值,生成比较结果;步骤5,当所述比较结果为是时,输出所述牵引供电系统模型;步骤6,否则,对所述牵引供电系统模型进行参数自动校正,生成更新的所述牵引供电系统模型,转到所述步骤1。本发明能够提高模型的精度。

    一种列车定位方法
    45.
    发明公开

    公开(公告)号:CN112356881A

    公开(公告)日:2021-02-12

    申请号:CN202011033163.1

    申请日:2020-09-27

    Abstract: 本发明提供了一种列车定位方法。该方法包括:在列车的运行线路上的各牵引供电所的馈线柜设置电压传感器、电流传感器和采集装置;在列车的运行过程中,各牵引供电所中的电压传感器和电流传感器同步测量其所在的牵引供电所馈线处输出的电压信号和电流信号,并通过采集装置将电压信号和电流信号上传到上位机;上位机选取距离列车的车头最近的牵引供电所A和距离列车的车尾最近的牵引供电所B的电压电流值,通过滑窗方式将其代入矩阵方程计算出列车的位置信息。本发明仅需测量牵引供电线路两侧牵引变电所的电压电流值,无需增加复杂的信号数据传输设备,结构简单,不会引起信号系统故障且不增加危险行车的因素。

    一种散热器散热状态快速检测方法及装置

    公开(公告)号:CN110567739A

    公开(公告)日:2019-12-13

    申请号:CN201910641600.9

    申请日:2019-07-16

    Abstract: 本发明公开了一种散热器散热状态快速检测方法及装置,该方法包括:首先建立散热器散热状态快速检测装置,通过软件方法,实现功率器件功率损耗的实时计算;其次通过变流装置散热器温升、散热器热阻与变流装置功率器件功率损耗三者的关系,利用实时计算所得的功率器件功率损耗,计算得到散热器的第一热阻;根据散热器第一热阻变化斜率快速判断热阻稳态值,然后根据热阻稳态值与散热器散热状态之间的对应关系,得到此时的变流装置散热器散热状态。本发明通过监测变流装置散热器的热阻变化斜率,来快速判断散热器的堵塞程度,是一种在线的智能快速检测方法,仅利用变流装置现有传感器,通过软件编程实现散热器堵塞程度的快速检测。

    基于扩展z变换的电流预测方法及装置

    公开(公告)号:CN107204711B

    公开(公告)日:2019-09-17

    申请号:CN201710536194.0

    申请日:2017-07-04

    Abstract: 本发明提供一种基于扩展z变换的电流预测方法及装置。该方法包括:对调制波加载的第一时刻对应的四象限变流器的第一电流进行z变换和扩展z变换,得到z变换结果和扩展z变换结果;建立z变换结果与扩展z变换结果的关联关系,并根据关联关系得到差分方程,差分方程用于指示第一时刻对应的第一电流、第二时刻对应的第二电流以及中间时刻对应的中间电流的关联关系;根据差分方程、第一电流和中间电流,预测第二电流,并根据第二电流计算调制波加载的第二时刻对应的调制波的幅值和相位,以控制四象限变流器的交流侧的电流输出。本发明解决了传统控制方法中由于开关频率降低带来的控制延时过长的问题,实现了对下一次调制波加载时刻对应电流的预测。

    一种变流装置散热器堵塞程度评估方法及装置

    公开(公告)号:CN109858107A

    公开(公告)日:2019-06-07

    申请号:CN201910029836.7

    申请日:2019-01-14

    Abstract: 本发明公开了一种变流装置散热器堵塞程度评估方法及装置,该方法包括:首先建立变流装置功率器件功率损耗模型,通过软件编程的方法,实现功率器件功率损耗的实时计算;其次通过变流装置散热器温升、散热器热阻与变流装置功率器件功率损耗三者的关系,利用实时计算所得的功率器件功率损耗,计算得到散热器此时的热阻比值;接着根据散热器热阻比值的大小与散热器堵塞程度之间的对应关系,得到此时的变流装置散热器堵塞程度。本发明通过监测变流装置散热器的热阻比值大小,来监测散热器的堵塞程度,是一种在线的智能监测方法,仅利用变流装置现有传感器,通过软件编程实现在线监测散热器堵塞程度。

    牵引变流器使用寿命预测方法及装置

    公开(公告)号:CN109444609A

    公开(公告)日:2019-03-08

    申请号:CN201811559238.2

    申请日:2018-12-18

    Abstract: 本发明提供了一种牵引变流器使用寿命预测方法及装置,涉及牵引变流器使用寿命预测技术领域。该装置包括电流检测调理模块和数据处理控制模块;所述电流检测调理模块包括6个检测单元,分别检测流经牵引变流器中网侧变流器电子器件的三相输入老化电流和牵引逆变器电子器件的三相输出老化电流,并传递至数据处理控制模块;所述数据处理控制模块基于GM(2,1)预测模型,计算网侧变流器的每一相电子器件和牵引逆变器的每一相电子器件的损伤度,并进行寿命预测。本发明实现了对牵引变流器中电子器件的老化水平评估和寿命预测,采用GM(2,1)预测模型构造了原始数据的二阶白化微分方程,增加了老化过程的拟合精度,降低了牵引变流器的寿命预测误差。

    牵引变流器故障分析方法及装置

    公开(公告)号:CN109358255A

    公开(公告)日:2019-02-19

    申请号:CN201811559237.8

    申请日:2018-12-18

    Abstract: 本发明提供了一种牵引变流器故障分析方法及装置,涉及动车组故障分析技术领域。该装置包括电流检测调理模块、电压检测调理模块和数据处理控制模块;电流检测调理模块包括6个检测单元,分别检测牵引变流器中网侧变流器的三相输入电流和牵引变流器中牵引逆变器的三相输出电流,并传递至数据处理控制模块;电压检测调理模块检测牵引变流器中间直流环节电压,并传递至数据处理控制模块;数据处理控制模块基于OOCPN的推理机,根据所述牵引变流器中网侧变流器的三相输入电流、牵引变流器中牵引逆变器的三相输出电流和中间直流环节电压,计算牵引变流器故障器件。本发明基于OOCPN的推理机,根据故障电流特征完成对故障原因的分析,提高了故障诊断的准确率。

Patent Agency Ranking