-
公开(公告)号:CN110282977B
公开(公告)日:2021-01-08
申请号:CN201910520314.7
申请日:2019-06-17
Applicant: 东北大学
IPC: C04B35/563 , C04B35/573 , C04B35/58 , C04B35/622
Abstract: 本发明属于材料技术领域,提供一种B4C/TiB2层状复合陶瓷材料的制备方法,按以下步骤进行:(1)将B4C粉体、TiB2粉体或B4C/TiB2混合粉体按比例与碳源混合均匀,充分干燥后研磨造粒,再进行过筛,选取粒度在24~60目间的颗粒作为模压物料;(2)按目标层状结构逐层将模压物料填入模具进行模压成型,经碳化后获得B4C/TiB2/C层状素坯;(3)将B4C/TiB2/C层状素坯作为骨架,采用Si作为熔渗剂,进行真空熔渗,制得B4C/TiB2层状复合陶瓷材料。本发明的方法步骤简单、温度要求低,在较低制备成本的条件下能够获得致密度高、综合力学性能优良的B4C/TiB2层状复合陶瓷材料,在制备过程中样品尺寸变化
-
公开(公告)号:CN108409328A
公开(公告)日:2018-08-17
申请号:CN201810246408.5
申请日:2018-03-23
Applicant: 东北大学
IPC: C04B35/563 , C04B35/622 , C04B35/65
Abstract: 本发明涉及一种碳化硼陶瓷复合材料的制备方法,包括如下步骤:S1、将碳化硼粉末、碳源和混料介质进行湿法混合形成混合物料,经烘干、研磨、过筛后形成待模压物料;S2、将待模压物料压制成型,经烘干后得到陶瓷坯体;S3、将硅块置于陶瓷坯体上进行真空熔渗反应烧结,得到碳化硼陶瓷复合材料前驱体;S4、除去碳化硼陶瓷复合材料前驱体表面的残留硅后将其置于加热设备中进行热处理,再冷却至室温后得到碳化硼陶瓷复合材料。本发明的碳化硼陶瓷复合材料的制备方法能够降低烧结温度,提高碳化硼陶瓷复合材料的致密性,同时能够提高碳化硼陶瓷复合材料的力学性能。
-
公开(公告)号:CN105312587A
公开(公告)日:2016-02-10
申请号:CN201510920978.4
申请日:2015-12-11
Applicant: 东北大学
IPC: B22F9/10
CPC classification number: B22F9/10
Abstract: 一种制备金属粉末用离心雾化装置,雾化罐接有地线,雾化罐上方有储料仓,金属丝通过储料仓与直流电源相接;雾化罐内上部有滚轮矫直器;矫直器下方有离心装置;离心装置有感应加热的转盘,转盘轴线与金属丝轴线重合,转盘通过支撑轴与转向减速器相接,转向减速器通过磁流体密封装置与罐外高速电机连接,雾化罐设有收粉装置。用该装置制备金属粉末,金属丝在真空雾化罐内熔化,不与空气接触,避免了金属液氧化,金属利用率高;金属液不与耐火材料接触,避免非金属夹杂污染,可生产高纯度金属粉末;金属粉末颗粒形状和尺寸易于控制,可获得形状接近球形、尺寸分布窄的粉体颗粒,特别适合3D打印用。
-
公开(公告)号:CN104016680A
公开(公告)日:2014-09-03
申请号:CN201410223139.2
申请日:2014-05-23
Applicant: 东北大学
IPC: C04B35/563 , C04B35/622
Abstract: 一种B4C基层状陶瓷复合材料及其制备方法,属于材料技术领域,本发明的B4C基层状陶瓷复合材料是由B4C-Ti-C层和B4C-Si层复合而成,B4C-Ti-C层和B4C-Si层的厚度比为:1/9~9;B4C-Ti-C层粉料按质量百分比组成为:碳化硼粉:93~95%,钛粉:2~4%,碳黑:1~5%。其制备方法包括配料、混料、干燥、预压成型和真空热压烧结五个步骤。本发明制备方法制备出的B4C基层状陶瓷复合材料的B4C陶瓷层为受力面时,其硬度为28.0~35.0GPa,断裂韧性为2.2~4.8MPa·m1/2,抗折强度为293~514MPa,在单一碳化硼材料的基础上提高断裂韧性近2倍;本发明制备方法采用单步热压烧结,简化了制备工艺,降低了制备成本;制备出高密度良好力学性能的B4C基层状陶瓷复合材料,应用于轻质防弹装甲制造领域。
-
公开(公告)号:CN102464490B
公开(公告)日:2013-06-12
申请号:CN201010547748.5
申请日:2010-11-17
Applicant: 东北大学
IPC: C04B35/563 , C04B35/622
Abstract: 一种碳化硼基陶瓷复合材料的制备方法,属于材料技术领域,按以下步骤进行:(1)将B4C粉末与粘结剂混合均匀,或将B4C混合粉体与粘结剂混合均匀,再进行过筛,选取粒度在24~60目间的颗粒作为模压物料;(2)将模压物料模压成形,干燥后获得B4C-C素坯;(3)将B4C-C素坯作为骨架,采用Si作为熔渗剂,进行真空熔渗。本发明的方法步骤简单、温度要求低,在较低制备成本的条件下能够获得致密度高的碳化硼陶瓷复合材料,在制备过程中样品尺寸变化
-
公开(公告)号:CN102229494B
公开(公告)日:2013-06-12
申请号:CN201110148091.X
申请日:2011-06-03
Applicant: 东北大学
IPC: A61L27/56 , C04B35/447 , C04B35/622
Abstract: 本发明涉及陶瓷材料技术领域,具体涉及一种大孔羟基磷灰石陶瓷的制备方法。首先配制均匀的粘结剂聚乙烯醇水溶液,使用浓盐酸调节聚乙烯醇的pH值至4~5.5后,将HA粉体和聚乙烯醇水溶液按质量比为2~5∶10~20混合,形成均匀浆料,加入表面活性剂十二烷基硫酸钠;将浆料加入到聚丙烯罐中,并按球料比1.5∶1加入刚玉小球后密封聚丙烯罐,缓慢混料至均匀;然后均匀振荡或机械搅拌浆料,引入气泡;将振荡均匀的浆料转移到-17℃的容器中,冷冻4~12个小时后,室温或冷冻条件下萃取冷冻后的浆料中的水,再对其干燥;最后在在空气中完成烧结,烧结温度为1000~1200℃,保温时间为0.5~2h。
-
公开(公告)号:CN101550030B
公开(公告)日:2012-08-01
申请号:CN200910011491.9
申请日:2009-05-12
Applicant: 东北大学
Abstract: 一种三维网络碳化硅表面制备氧化铝陶瓷薄膜的方法,属于材料技术领域,包括以下步骤:(1)采用溶胶-凝胶法制备含铝溶胶;(2)采用真空浸渍法在3D-SiC上进行涂覆;(3)涂覆含铝溶胶完成后的三维网络碳化硅进行烧结。本发明以廉价的原料、简单的制备方法、简短的制备周期,在3D-SiC基体表面制备均匀、致密、气孔率低的Al2O3陶瓷薄膜,薄膜与基体有较强的结合强度,薄膜的抗热震性优良,从而实现对3D-SiC/钢的界面反应进行控制。
-
公开(公告)号:CN102303977A
公开(公告)日:2012-01-04
申请号:CN201110134929.X
申请日:2011-05-24
Applicant: 东北大学
IPC: C04B35/74 , C04B35/447
Abstract: 一种钛铁颗粒增强的羟基磷灰石基生物陶瓷材料的制备方法,属于材料技术领域,按以下步骤进行:将钛粉和铁粉混合,以球磨混合磨细,制成复合粉体;将复合粉体与HA粉末混合制成混合粉末,以无水乙醇为介质球磨混合均匀,下烘干去除乙醇获得HA/Ti-Fe粉体;将HA/Ti-Fe粉体单向压制成型或冷等静压成型,然后在真空条件下进行烧结,获得钛铁颗粒增强的羟基磷灰石基生物陶瓷材料。本发明的方法工艺简单,成本较低,容易实现工业化生产,制备的生物陶瓷复合材料具有优良力学性能和生物学性能。
-
公开(公告)号:CN101215164B
公开(公告)日:2010-07-28
申请号:CN200810010121.9
申请日:2008-01-16
Applicant: 东北大学
IPC: C04B35/563 , C04B35/622 , C04B41/88
Abstract: 本发明涉及一种碳化硼复合材料的制备方法,特征是步骤如下:按质量百分数计取金属氧化物粉末5~50%,余量为碳化硼粉末,混合配料,在100~150MPa下模压成预制坯;然后将预制坯置于真空烧结炉中,抽真空至20~100Pa,以5~8℃/min速度升温至1850~2060℃,保温10~60分钟,得到碳化硼基多孔预烧体;最后在真空条件下熔渗铝,熔渗工艺为900~1100℃,保温0.5~2h,真空度为5~100Pa。本发明优点和产生积极效果是:在单一碳化硼材料的基础上提高断裂韧性1.78~2.75倍;生产成本低;制备方法简单,有利于加工成各种形状复杂的产品,易于在碳化硼陶瓷材料制造领域推广应用。
-
公开(公告)号:CN101550030A
公开(公告)日:2009-10-07
申请号:CN200910011491.9
申请日:2009-05-12
Applicant: 东北大学
Abstract: 一种三维网络碳化硅表面制备氧化铝陶瓷薄膜的方法,属于材料技术领域,包括以下步骤:(1)采用溶胶-凝胶法制备含铝溶胶;(2)采用真空浸渍法在3D-SiC上进行涂覆;(3)涂覆含铝溶胶完成后的三维网络碳化硅进行烧结。本发明以廉价的原料、简单的制备方法、简短的制备周期,在3D-SiC基体表面制备均匀、致密、气孔率低的Al2O3陶瓷薄膜,薄膜与基体有较强的结合强度,薄膜的抗热震性优良,从而实现对3D-SiC/钢的界面反应进行控制。
-
-
-
-
-
-
-
-
-