一种高导热氮化硅基板的制备方法

    公开(公告)号:CN111170745A

    公开(公告)日:2020-05-19

    申请号:CN202010025210.1

    申请日:2020-01-09

    Abstract: 本发明公开了一种高导热氮化硅基板的制备方法。属于陶瓷材料制备技术领域。本发明采用氮化硅粉末为原料,添加稀土氧化物和碱土金属氧化物作为混合烧结助剂,加入量为6wt%~10wt%,加入高分子化合物并在有机溶剂中球磨混合形成浆料。经流延成形为坯体,在氮气中1400℃~1600℃下预烧结1-5h,再在气压烧结炉中1800℃~2000℃保温2-10h,其氮气压力为0.5-3MPa。本发明使用的氮化硅粉末为高纯α相氮化硅,具有很高的比表面积和高的烧结活性,能够有效降低致密化温度。加入的高分子含碳化合物为多组元,在惰性气氛中进行脱脂和预烧结,可提高制品热导率。制备的氮化硅陶瓷基板热导率不低于90W/m·K,抗弯强度不低于800MPa。

    一种纳米氮化硅粉体的制备方法

    公开(公告)号:CN111115592A

    公开(公告)日:2020-05-08

    申请号:CN202010023793.4

    申请日:2020-01-09

    Abstract: 本发明公开了一种纳米氮化硅粉体的制备方法,属于陶瓷粉体制备技术领域。工艺过程为:(1)将正硅酸四乙酯、硝酸铵和水溶性有机物按照一定比例配制成混合溶液;(2)将混合溶液在不高于100℃的温度下加热搅拌至粘稠浆料;(3)将浆料在100℃-400℃的非氧环境中反应得到前驱物;(4)将前驱物于1300℃-1500℃的氮气气氛中反应1-10h,得到氮化硅粉体;(5)随后在空气中除去多余碳。本发明工艺简单,效率高,成本低,得到的氮化硅粉体颗粒球形度好,粒度小于100nm。

    短流程、用低成本微米WO3制备高性能纳米WC粉末的方法

    公开(公告)号:CN110980735A

    公开(公告)日:2020-04-10

    申请号:CN201911225391.6

    申请日:2019-12-04

    Abstract: 本发明提供了一种短流程、用低成本微米WO3制备高性能纳米WC粉末的方法,属于粉末冶金粉末制备技术领域。具体制备方法为:以粒径30~120μm的WO3粉末和碳黑粉末为原料,按照一定配比在球磨机中进行机械混合。由于金属氧化物脆性大,只需要短时间、低转速球磨即可将微米WO3细化为粒径≤100nm的颗粒。本方法以去离子水为球磨介质,并加入表面活性剂,有效避免了球磨过程中粉末颗粒团聚的现象。因此,球磨后可获得各成分均匀分布的纳米级混合粉末。最后,将混合粉末置于真空炉中进行碳热还原-碳化反应,即可获得纳米WC粉末。本方法所需设备简单,原料价格低廉,制备过程简便、安全、周期短、能耗低,而且制备的纳米WC粉末的成分和粒径有利于调整,具有突出的工业应用优势。

    一种金属材料的烧结致密化及晶粒尺寸控制方法

    公开(公告)号:CN109676124B

    公开(公告)日:2020-02-28

    申请号:CN201811583483.7

    申请日:2018-12-24

    Abstract: 本发明一种金属材料的烧结致密化及晶粒尺寸控制方法。方法为:首先对原料粉末进行解团聚处理,得到分散性好的解团聚粉末。解团聚粉末进行喷雾造粒以提高粉末流动性能和压坯密度均匀性。造粒粉末进行高压压制和冷等静压成形。压坯经过两步无压烧结后得到高致密度细晶粒难熔金属。第一步烧结是将压坯快速升温至温度T1,保温将致密度控制在75‑85%、随后降温温度T2,进行时间保温以进一步消除残余孔洞。两步烧结能够大幅度降低烧结温度,在较低温度下就能够实现金属坯体的近全致密化,而且能够有效抑制常规烧结过程中晶粒在致密化后期的快速长大,所制备的难熔金属制品接近全致密、晶粒细小且晶粒尺寸分布均匀、力学性能优异。

    一种制备纳米W-Re合金粉末的方法

    公开(公告)号:CN107790738B

    公开(公告)日:2019-10-22

    申请号:CN201710968874.X

    申请日:2017-10-18

    Abstract: 本发明提供了一种制备纳米W‑Re合金粉末的方法,属于粉末冶金粉末制备技术领域。具体制备方法为:以偏钨酸铵、铼酸铵、燃料、硝酸铵为原料,采用低温燃烧合成法制备氧化物复合粉末,然后使用氢气还原制得W‑Re合金纳米粉末。本发明采用的低温燃烧合成法属于液相合成法,可以达到了分子级别的混合,得到的前驱体中氧化钨、氧化铼均匀混合,还原产物为合金粉末,无需后续特殊处理。另外本方法的原料简单易得,设备简单,工艺快捷,适合进行大规模生产。

    一种高致密度钛制品的活化烧结制备方法

    公开(公告)号:CN110280760A

    公开(公告)日:2019-09-27

    申请号:CN201910584363.7

    申请日:2019-07-01

    Abstract: 本发明提供一种高致密度钛制品的活化烧结制备方法,属于粉末冶金技术领域。该方法首先采用流化床气流磨对钛粉进行粉体改性处理;然后通过流化工艺调节分选轮频率获得不同粒径范围的高活性钛粉;将获得的不同粒径钛粉进行模压成形;采用真空钨丝炉或高真空钼丝炉进行高真空烧结,得到高致密度钛烧结制品。通过流化-气流分级技术可获得粒径分布窄、粉末粒径可调、比表面积大、氧含量低的高活性钛粉;与未进行粉体改性处理,直接模压烧结的钛制件相比,活化处理的钛粉烧结件具有尺寸收缩性小、致密度高、抗拉强度高、塑性较好、组织均匀、晶粒细小等特点;活化处理的钛粉烧结过程中具有烧结速率高,保温时间短即可达到较高致密度。

    一种低温烧结制备高致密度纯钨制品的方法

    公开(公告)号:CN105478776B

    公开(公告)日:2019-09-10

    申请号:CN201510922631.3

    申请日:2015-12-14

    Abstract: 本发明提供了一种低温烧结制备高致密度异型纯钨制品方法的方法,属于粉末注射成形技术领域。其工艺流程为:采用气流磨对市售高纯钨粉进行分散分级处理,将处理后粉末与粘结剂混合均匀进行混炼,制得均匀喂料;喂料在经注射成形得到一定形状的坯体;将成形坯经溶剂脱脂和热脱脂后烧结得到钨制品。对粉末进行气流磨分散分级处理是在保护气氛下,气体带动粉末相互碰撞,可大批量处理粉末,且不引入杂质,经处理后的粉末粒度分布变窄,颗粒形状变规则呈近球形,松装振实密度提高,相应提高注射成形粉末装载量至55%‑70%,经1900度氢气气氛烧结后制得纯钨制品致密度高于96%。

    多孔空心碗形氧化铝粉体材料及氧化铝陶瓷的制备方法

    公开(公告)号:CN110183214A

    公开(公告)日:2019-08-30

    申请号:CN201910448895.8

    申请日:2019-05-27

    Abstract: 一种多孔空心碗形氧化铝粉体材料及氧化铝陶瓷的制备方法,属于无机材料制备领域。利用以空心碗形碳粉体为模板,将该空心碗形碳分散于一定浓度的铝盐溶液中,常温下搅拌一定时间使铝离子渗透入碳碗,进行清洗并干燥;将干燥后的粉末转移至炉中煅烧,在保护气氛中升温到、保温;不进行降温操作,直接打开法兰,通入空气,继续升温、保温,进行二次煅烧,降温,得到多孔空心碗形氧化铝粉末;将多孔空心碗形氧化铝粉末、烧结助剂按比例混合制备混合粉末:将混合粉末与粘结剂按照比例混合,制备喂料;将喂料采用注射成形技术制备出成型坯体;将成型坯体置于脱脂炉以一定升温速度升温度、保温进行脱脂;将脱脂坯在以一定速度升温烧结,保温后,制得多孔氧化铝陶瓷制品。

    一种光固化喷射粘接装置及其使用方法

    公开(公告)号:CN109747023A

    公开(公告)日:2019-05-14

    申请号:CN201910067361.0

    申请日:2019-01-24

    Abstract: 本发明属于增材制造技术领域,涉及一种光固化喷射粘接装置及其使用方法,光固化喷射粘接装置的主体结构为工作台上设置铺粉机构、铺胶黏剂机构和光源,铺粉机构和铺胶黏剂机构相互平行,光源与铺粉机构和铺胶黏剂机构分别垂直,光固化喷射粘接装置使用方法的工艺过程包括粉层铺设、胶黏剂铺设和选区光固化三个步骤:首先,通过铺粉机构在工作台Y轴方向上的往复运动实现全工作台粉层的铺放,然后,通过铺胶黏剂机构在工作台Y轴方向上的往复运动实现全粉层上部胶黏剂的铺放,最后,通过高精度可控线光源或激光在工作台X轴方向上的移动对粉层和胶黏剂进行精确固化,实现粉末坯体的制造,剩余未粘结粉末通过脱脂烧结的方法去除残留胶黏剂。

    一种金属材料的烧结致密化及晶粒尺寸控制方法

    公开(公告)号:CN109676124A

    公开(公告)日:2019-04-26

    申请号:CN201811583483.7

    申请日:2018-12-24

    Abstract: 本发明一种金属材料的烧结致密化及晶粒尺寸控制方法。方法为:首先对原料粉末进行解团聚处理,得到分散性好的解团聚粉末。解团聚粉末进行喷雾造粒以提高粉末流动性能和压坯密度均匀性。造粒粉末进行高压压制和冷等静压成形。压坯经过两步无压烧结后得到高致密度细晶粒难熔金属。第一步烧结是将压坯快速升温至温度T1,保温将致密度控制在75-85%、随后降温温度T2,进行时间保温以进一步消除残余孔洞。两步烧结能够大幅度降低烧结温度,在较低温度下就能够实现金属坯体的近全致密化,而且能够有效抑制常规烧结过程中晶粒在致密化后期的快速长大,所制备的难熔金属制品接近全致密、晶粒细小且晶粒尺寸分布均匀、力学性能优异。

Patent Agency Ranking