-
公开(公告)号:CN112047740B
公开(公告)日:2021-08-03
申请号:CN202010831544.8
申请日:2020-08-18
Applicant: 北京科技大学
IPC: C04B35/581 , C04B35/622 , C04B35/645
Abstract: 本发明属于金刚石复合材料制备加工技术领域,涉及了一种新型氮化铝/金刚石聚晶材料的制备方法。制备方法为将氮化铝粉末、烧结助剂和导电金属粉充分混合,与金刚石/钴复合层分别进行冷压成形,再采用高温高压烧结法制备新型氮化铝/金刚石聚晶材料。制备出的氮化铝/金刚石聚晶材料结合牢固,厚度可控,磨削效率高,耐热性能好,氮化铝基体导热性能远高于传统金刚石聚晶复合片所使用的硬质合金基体,可广泛应用在汽车、航空航天、能源等领域,解决材料的高速精密加工需求。
-
公开(公告)号:CN110265638B
公开(公告)日:2021-02-26
申请号:CN201910459856.8
申请日:2019-05-29
Applicant: 北京科技大学
IPC: H01M4/36 , H01M4/52 , H01M4/62 , H01M10/0525
Abstract: 本发明属于无机材料制备和电池材料技术领域,具体涉及一种氮掺杂碳包覆多孔空心碗形氧化铁粉体材料及其制备方法,用于高体积能量密度、稳定性的离子电池负极。该粉体颗粒由氧化铁和碳复合而成,具有完整的空心碗形形貌,由内外双层壁组成,球壁之间存在间隙,氮掺杂无定形碳膜均匀地包覆在氧化铁表面,包覆层厚度可控。这种材料,具有空心结构材料的优点,以解决氧化铁在二次电池充放电过程中,体积变化导致电极的破碎与脱落,产生容量不可逆降低的问题;同时,保证粉体具有较高的振实密度,以提高电池体积能量密度;再者,以解决氧化铁导电性低的技术问题,以提高电池的倍率性能。
-
公开(公告)号:CN110171812B
公开(公告)日:2020-12-22
申请号:CN201910448892.4
申请日:2019-05-27
Applicant: 北京科技大学
IPC: C01B32/05
Abstract: 一种多层多孔空心碗形碳材料及其制备方法,属于无机材料制备领域。该材料为碗形空心结构的无定形碳质颗粒,呈凹陷状的碗形形貌,内部具有空心结构,球壁为多层结构,碗壁上存在孔洞,包括微孔和介孔。本发明将表面活性剂、碳源分别溶于水中,进行水热碳化,得到水热碳空心碗形碳;将粉体分散在碱性水溶液中,滴入正硅酸乙酯,搅拌一定时间,然后对产物进行收集,然后,分散到碳源水溶液中,进行水热碳化包覆;根据层数的需要,重复氧化硅包覆和碳包覆步骤;最后,煅烧粉末并酸洗,去除含硅化合物,干燥后得到多层多孔空心碗形碳材料。本材料具有高的空间利用率和振实密度,多层球壁可为化学反应提供大量活性位点,该方法可实现球壁层数和厚度的可控合成。
-
公开(公告)号:CN112028636A
公开(公告)日:2020-12-04
申请号:CN202010893177.4
申请日:2020-08-26
Applicant: 北京科技大学
IPC: C04B35/581 , B28B1/24 , C04B35/64 , C04B35/634 , C04B35/632
Abstract: 一种高导热氮化铝/石墨烯复合陶瓷零件的制备方法,属于无机材料制备领域。将纳米氮化铝粉体、纳米石墨烯颗粒、烧结助剂按一定质量比例混合制备混合粉末;将混合粉末与粘结剂按照一定比例混合,制备喂料;将喂料采用注射成形技术制备出成形坯体;将成形坯体置于脱脂炉以一定升温速度升温、保温后进行脱脂;将脱脂坯在以一定速度升温进行烧结,保温后,制得高导热氮化铝/石墨烯复合陶瓷零件。石墨烯颗粒的加入可以有效的提高热传递,提高陶瓷材料的热导率,同时也有利于提高陶瓷材料的致密度,改善其力学性能。
-
公开(公告)号:CN110183214A
公开(公告)日:2019-08-30
申请号:CN201910448895.8
申请日:2019-05-27
Applicant: 北京科技大学
IPC: C04B35/10 , C04B35/626 , C04B35/622 , C04B38/06 , C01B32/05
Abstract: 一种多孔空心碗形氧化铝粉体材料及氧化铝陶瓷的制备方法,属于无机材料制备领域。利用以空心碗形碳粉体为模板,将该空心碗形碳分散于一定浓度的铝盐溶液中,常温下搅拌一定时间使铝离子渗透入碳碗,进行清洗并干燥;将干燥后的粉末转移至炉中煅烧,在保护气氛中升温到、保温;不进行降温操作,直接打开法兰,通入空气,继续升温、保温,进行二次煅烧,降温,得到多孔空心碗形氧化铝粉末;将多孔空心碗形氧化铝粉末、烧结助剂按比例混合制备混合粉末:将混合粉末与粘结剂按照比例混合,制备喂料;将喂料采用注射成形技术制备出成型坯体;将成型坯体置于脱脂炉以一定升温速度升温度、保温进行脱脂;将脱脂坯在以一定速度升温烧结,保温后,制得多孔氧化铝陶瓷制品。
-
公开(公告)号:CN115331747A
公开(公告)日:2022-11-11
申请号:CN202210907042.8
申请日:2022-07-29
Applicant: 北京科技大学
IPC: G16C20/30 , G16C20/70 , C25B1/04 , C25B11/073
Abstract: 本发明涉及一种过渡金属氢氧化物析氧电催化剂的智能设计方法及系统,属于无机材料设计技术领域,能够准确快速预测过渡金属氢氧化物电催化剂的析氧活性,解决在广域成分空间中高效搜索具有低OER过电位的候选过渡金属氢氧化物电催化剂配方的难题;该方法包括:析氧活性预测模型构建:先对高维稀疏的实例数据进行稠密特征表示,再进行模型构建,得到训练好的析氧活性预测模型;过渡金属氢氧化物析氧电催化剂设计:根据电催化剂的设计要求,用穷举法得到所有满足要求的电催化剂,并用所述析氧活性预测模型对其分别进行预测,得到所有所述电催化剂的预测结果;根据所述预测结果确定最终设计的电催化剂。
-
公开(公告)号:CN112047740A
公开(公告)日:2020-12-08
申请号:CN202010831544.8
申请日:2020-08-18
Applicant: 北京科技大学
IPC: C04B35/581 , C04B35/622 , C04B35/645
Abstract: 本发明属于金刚石复合材料制备加工技术领域,涉及了一种新型氮化铝/金刚石聚晶材料的制备方法。制备方法为将氮化铝粉末、烧结助剂和导电金属粉充分混合,与金刚石/钴复合层分别进行冷压成形,再采用高温高压烧结法制备新型氮化铝/金刚石聚晶材料。制备出的氮化铝/金刚石聚晶材料结合牢固,厚度可控,磨削效率高,耐热性能好,氮化铝基体导热性能远高于传统金刚石聚晶复合片所使用的硬质合金基体,可广泛应用在汽车、航空航天、能源等领域,解决材料的高速精密加工需求。
-
公开(公告)号:CN110265638A
公开(公告)日:2019-09-20
申请号:CN201910459856.8
申请日:2019-05-29
Applicant: 北京科技大学
IPC: H01M4/36 , H01M4/52 , H01M4/62 , H01M10/0525
Abstract: 本发明属于无机材料制备和电池材料技术领域,具体涉及一种氮掺杂碳包覆多孔空心碗形氧化铁粉体材料及其制备方法,用于高体积能量密度、稳定性的离子电池负极。该粉体颗粒由氧化铁和碳复合而成,具有完整的空心碗形形貌,由内外双层壁组成,球壁之间存在间隙,氮掺杂无定形碳膜均匀地包覆在氧化铁表面,包覆层厚度可控。这种材料,具有空心结构材料的优点,以解决氧化铁在二次电池充放电过程中,体积变化导致电极的破碎与脱落,产生容量不可逆降低的问题;同时,保证粉体具有较高的振实密度,以提高电池体积能量密度;再者,以解决氧化铁导电性低的技术问题,以提高电池的倍率性能。
-
公开(公告)号:CN110255999A
公开(公告)日:2019-09-20
申请号:CN201910496942.6
申请日:2019-06-10
Applicant: 北京科技大学
Abstract: 本发明属于无机材料制备和电池材料技术领域,涉及一种碳氧双掺杂多孔空心碗形碳材料及其制备方法,该材料为碳质的碗形结构颗粒,分散性高,粒径分布窄,粒径可控,颗粒内部存在空心结构,形貌呈凹陷碗状,壁厚可控,碗壁上存在许多孔洞,孔包括微孔和介孔,比表面积高;具有氮氧元素双掺杂的特性。用于高体积比容量、循环稳定性的钾离子电池负极。钾离子电池由于钾全球储量丰富和氧化还原电压值低的特点,被认为是取代传统的价格高昂的锂离子电池候选者之一,但是,钾离子尺寸较大,导致钾离子电池尚缺少比容量高,循环稳定性和倍率性能好的电极材料。本发明材料用于钾离子电池电极,达到了增强钾离子电池稳定性,提高倍率性能,同时提高电池的体积比容量的目的。
-
公开(公告)号:CN110194441A
公开(公告)日:2019-09-03
申请号:CN201910459958.X
申请日:2019-05-29
Applicant: 北京科技大学
IPC: C01B21/072 , C04B35/581 , C04B38/08
Abstract: 一种空心球形氮化铝粉体材料及氮化铝多孔陶瓷的制备方法,属于无机材料制备领域。利用水热碳球形粉体为模板,分散于铝盐溶液中,使铝离子渗透入碳球;将粉末转移至炉中煅烧,在保护气氛中升温、保温;不进行降温操作,直接通入空气,继续升温、保温,进行二次煅烧,得到空心球形氧化铝粉体;将空心球形氧化铝作为原料,通过碳热还原法或氨解法,制备空心球形氮化铝粉体;将空心球形氮化铝、烧结助剂按比例混合制备混合粉末;将混合粉末与粘结剂按比例混合,制备喂料;将喂料采用注射成形技术制备出成形坯体;将成形坯体置于脱脂炉以一定升温速度升温度、保温进行脱脂;将脱脂坯在以一定速度升温烧结,保温后,制得高导热氮化铝多孔陶瓷。
-
-
-
-
-
-
-
-
-