基于几何非纠缠变分自动编码器学习几何解耦表示的方法

    公开(公告)号:CN113723008A

    公开(公告)日:2021-11-30

    申请号:CN202111050120.9

    申请日:2021-09-08

    Inventor: 石川 王啸 张依丁

    Abstract: 本发明公开了一种基于几何非纠缠变分自动编码器学习几何解耦表示的方法,首次尝试学习几何解耦表示,并提出了一个几何解耦变分自动编码器模型(GDVAE),将不同几何空间中的分离表示投影到一个共享的潜在空间中,从而可以利用一个通用的度量来计算接近度,可以学习不同几何特征下的特征,结合不同几何以获得更为有效的特征表示,并通过实验结果证明了所提出的GDVAE模型的有效性。

    基于统一优化目标框架图神经网络的数据分类方法及装置

    公开(公告)号:CN112733933A

    公开(公告)日:2021-04-30

    申请号:CN202110023447.0

    申请日:2021-01-08

    Inventor: 石川 王啸 朱美琪

    Abstract: 本发明实施例提供了基于统一优化目标框架图神经网络的数据分类方法及装置,获取待分类对象的描述信息,待分类对象之间的关系信息;基于描述信息生成特征矩阵,基于关系信息生成邻接矩阵;将特征矩阵和邻接矩阵输入预先构建并训练完成的图神经网络,得到各待分类对象的分类结果;图神经网络是根据预先确定的特征传播方程构建的,特征传播方程是在预设优化目标方程的基础上进行图形过滤器赋值得到的,优化目标方程包括特征拟合约束项和图拉普拉斯正则化约束项。提出了图神经网络的统一的优化目标方程,并对图形过滤器进行赋值得到特征传播方程,根据特征传播方程构建图神经网络,根据所构建的图神经网络对待分类对象进行分类,能够提高分类准确性。

    基于多通路图卷积神经网络的对象分类方法及装置

    公开(公告)号:CN111814842A

    公开(公告)日:2020-10-23

    申请号:CN202010555093.X

    申请日:2020-06-17

    Inventor: 王啸 石川 朱美琪

    Abstract: 本发明实施例提供了一种对象的分类方法及装置,所述方法包括:获取待分类拓扑网络、第一拓扑信息及拓扑网络中每个节点的特征信息;基于每两个节点的特征信息之间的相似度,构建相似性拓扑图,并确定相似性拓扑图的第二拓扑信息;将第一拓扑信息、每个节点的特征信息及第二拓扑信息输入预先训练的节点分类模型,确定每个节点的类型;基于每个节点的类型,确定每个节点所表示的对象的类型。采用本发明实施例,可以提高对象分类的准确度。

    一种异质信息网络的嵌入方法和装置

    公开(公告)号:CN109800504A

    公开(公告)日:2019-05-24

    申请号:CN201910054117.0

    申请日:2019-01-21

    Inventor: 石川 王啸 张依丁

    Abstract: 本发明实施例提供了一种异质信息网络的嵌入方法和装置,所述方法可以包括:确定待嵌入异质信息网络中每个节点的表示向量;将所确定的表示向量输入至预先设定的双曲空间嵌入模型中;基于双曲空间嵌入模型,对表示向量进行双曲空间中的指数映射,得到每个节点在双曲空间中的嵌入向量。应用本发明实施例,由于双曲空间与异质信息网络同样具有幂律分布特性,在双曲空间中能够更贴合地体现出异质信息网络的结构和语义信息,使得异质信息网络的结构和语义信息保留得更完整。因此,可以提高嵌入准确度。

    基于几何非纠缠变分自动编码器学习几何解耦表示的方法

    公开(公告)号:CN113723008B

    公开(公告)日:2023-09-15

    申请号:CN202111050120.9

    申请日:2021-09-08

    Inventor: 石川 王啸 张依丁

    Abstract: 本发明公开了一种基于几何非纠缠变分自动编码器学习几何解耦表示的方法,首次尝试学习几何解耦表示,并提出了一个几何解耦变分自动编码器模型(GDVAE),将不同几何空间中的分离表示投影到一个共享的潜在空间中,从而可以利用一个通用的度量来计算接近度,可以学习不同几何特征下的特征,结合不同几何以获得更为有效的特征表示,并通过实验结果证明了所提出的GDVAE模型的有效性。

    一种分类模型的训练方法、装置、电子设备及存储介质

    公开(公告)号:CN112966763A

    公开(公告)日:2021-06-15

    申请号:CN202110285723.0

    申请日:2021-03-17

    Inventor: 王啸 石川 赵健安

    Abstract: 本申请实施例提供的一种分类模型的训练方法、装置、电子设备及存储介质,应用于信息技术领域,通过根据样本异质图生成样本异质图提取语义图并生成关系子图,根据关系子图得到待分类目标的分类结果,并计算当前损失,根据当前损失对待训练的异质图结构学习网络和待训练的图神经网络的参数同时进行调整,从而可以提高模型训练的效率。

    一种基于图卷积网络模型的分类方法及装置

    公开(公告)号:CN112699938A

    公开(公告)日:2021-04-23

    申请号:CN202011604370.8

    申请日:2020-12-30

    Inventor: 石川 王啸 薄德瑜

    Abstract: 本发明实施例提供了一种基于图卷积网络模型的分类方法及装置,获取目标对象的待处理特征数据,并输入至目标图卷积网络模型;目标图卷积网络模型包括多层感知器、卷积网络和特征变换层;通过多层感知器分别对每一目标对象的待处理特征数据进行非线性变换,得到该目标对象的第一特征数据;通过卷积网络,对各目标对象的第一特征数据进行特征提取,得到各目标对象的聚合特征数据;通过特征变换层分别对每一目标对象的聚合特征数据进行映射处理,得到该目标对象的类别标签;在预设的类别标签与类别的对应关系中,确定每一目标对象的类别标签对应的类别,作为该目标对象的类别。基于上述处理,可以提高确定出的目标对象的类别的准确性。

Patent Agency Ranking