-
公开(公告)号:CN112733933B
公开(公告)日:2024-01-05
申请号:CN202110023447.0
申请日:2021-01-08
Applicant: 北京邮电大学
IPC: G06F18/241 , G06N3/042 , G06N3/0464 , G06N3/08
Abstract: 本发明实施例提供了基于统一优化目标框架图神经网络的数据分类方法及装置,获取待分类对象的描述信息,待分类对象之间的关系信息;基于描述信息生成特征矩阵,基于关系信息生成邻接矩阵;将特征矩阵和邻接矩阵输入预先构建并训练完成的图神经网络,得到各待分类对象的分类结果;图神经网络是根据预先确定的特征传播方程构建的,特征传播方程是在预设优化目标方程的基础上进行图形过滤器赋值得到的,优化目标方程包括特征拟合约束项和图拉普拉斯正则化约束项。提出了图神经网络的统一的优化目标方程,并对图形过滤器进行赋值得到特征传播方程,根据特征传播方程构建图神经网络,根据所构建的图神经网络对待分类对象进行分类,能够提高分类准确性。
-
公开(公告)号:CN112733933A
公开(公告)日:2021-04-30
申请号:CN202110023447.0
申请日:2021-01-08
Applicant: 北京邮电大学
Abstract: 本发明实施例提供了基于统一优化目标框架图神经网络的数据分类方法及装置,获取待分类对象的描述信息,待分类对象之间的关系信息;基于描述信息生成特征矩阵,基于关系信息生成邻接矩阵;将特征矩阵和邻接矩阵输入预先构建并训练完成的图神经网络,得到各待分类对象的分类结果;图神经网络是根据预先确定的特征传播方程构建的,特征传播方程是在预设优化目标方程的基础上进行图形过滤器赋值得到的,优化目标方程包括特征拟合约束项和图拉普拉斯正则化约束项。提出了图神经网络的统一的优化目标方程,并对图形过滤器进行赋值得到特征传播方程,根据特征传播方程构建图神经网络,根据所构建的图神经网络对待分类对象进行分类,能够提高分类准确性。
-
公开(公告)号:CN111814842A
公开(公告)日:2020-10-23
申请号:CN202010555093.X
申请日:2020-06-17
Applicant: 北京邮电大学
Abstract: 本发明实施例提供了一种对象的分类方法及装置,所述方法包括:获取待分类拓扑网络、第一拓扑信息及拓扑网络中每个节点的特征信息;基于每两个节点的特征信息之间的相似度,构建相似性拓扑图,并确定相似性拓扑图的第二拓扑信息;将第一拓扑信息、每个节点的特征信息及第二拓扑信息输入预先训练的节点分类模型,确定每个节点的类型;基于每个节点的类型,确定每个节点所表示的对象的类型。采用本发明实施例,可以提高对象分类的准确度。
-
公开(公告)号:CN111814842B
公开(公告)日:2023-11-03
申请号:CN202010555093.X
申请日:2020-06-17
Applicant: 北京邮电大学
IPC: G06F18/2415 , G06F18/22 , G06N3/0464 , G06N3/042
Abstract: 本发明实施例提供了一种对象的分类方法及装置,所述方法包括:获取待分类拓扑网络、第一拓扑信息及拓扑网络中每个节点的特征信息;基于每两个节点的特征信息之间的相似度,构建相似性拓扑图,并确定相似性拓扑图的第二拓扑信息;将第一拓扑信息、每个节点的特征信息及第二拓扑信息输入预先训练的节点分类模型,确定每个节点的类型;基于每个节点的类型,确定每个节点所表示的对象的类型。采用本发明实施例,可以提高对象分类的准确度。
-
-
-