目标检测模型的优化方法、装置、电子设备及存储介质

    公开(公告)号:CN118350417B

    公开(公告)日:2024-11-19

    申请号:CN202410780844.6

    申请日:2024-06-18

    Abstract: 本发明公开了一种目标检测模型的优化方法、装置、电子设备及存储介质,应用于DINO模型,涉及人工智能技术领域,所述目标检测模型的优化方法包括以下步骤:S10,LST结构改进:在通过历史任务训练好的原DINO模型上新增旁支网络,以获得新DINO模型;S20,初步预热:固定原DINO模型的网络参数,并利用历史任务对旁支网络的参数进行训练;S30,持续学习增量训练:采用ER技术对新DINO模型进行持续学习训练,且训练过程中采用遗忘性优先采样策略进行历史任务样本选取;S40,推理测试。本发明的有益效果:既能缓解模型的灾难性遗忘,又能快速适应新任务。

    大语言模型的优化方法、装置、电子设备及存储介质

    公开(公告)号:CN118364870A

    公开(公告)日:2024-07-19

    申请号:CN202410796661.3

    申请日:2024-06-20

    Abstract: 本发明公开了一种大语言模型的优化方法、装置、电子设备及存储介质,涉及人工智能技术领域,所述大语言模型的优化方法具体包括以下步骤:S10,结合原LLM模型和大模型SFT数据集生成训练数据集;S20,在原LLM模型的主干网络中嵌入旁支网络,以获得新LLM模型,并在旁支网络的输入端输入掩码词元序列;S30,在训练数据集上采用损失函数对新LLM模型进行训练,训练完成后,LLM模型能够在一次推理中预测多个候选词元序列;S40,并行执行候选词元序列的生成和候选词元序列正确性的验证。本发明的有益效果:既节约了资源消耗和时间,又增强了LLM模型的解码能力,还保证了LLM模型输出结果的质量。

    基于切片表达的全景图像编码方法、解码方法及相关装置

    公开(公告)号:CN118042133A

    公开(公告)日:2024-05-14

    申请号:CN202410436958.9

    申请日:2024-04-12

    Abstract: 本发明公开一种基于切片表达的全景图像编码方法、解码方法及相关装置,涉及全景图像编解码领域,方法包括以下步骤:对获取的待编码全景图像进行超级切片图像转换,得到超级切片图像集合作为全景图像的切片化表达形式,利用切片编码器对超级切片图像集合进行特征提取,得到超级切片编码,进一步生成超级切片编码量化结果和先验编码量化结果,据此确定高斯分布概率模型,并利用该模型生成超级切片编码量化结果的比特流和先验编码量化结果的比特流;而在解码阶段,对超级切片编码量化结果的比特流进行解码,并将解码结果经过反量化以及切片解码后,得到全景重构图像,提高了全景图像表达的稳定性,实现了高性能的全景图像编解码。

    基于持续学习的图像恢复模型生成方法及图像恢复方法

    公开(公告)号:CN117541512A

    公开(公告)日:2024-02-09

    申请号:CN202311664982.X

    申请日:2023-12-05

    Abstract: 本发明提供基于持续学习的图像恢复模型生成方法及图像恢复方法,涉及图像处理技术领域,方法包括:获取目标退化类型对应的基线模型和训练集,训练集包括第一训练集和第二训练集,第一训练集中的训练数据组少于第二训练集中的训练数据组,每个训练数据组中包括样本待恢复图像以及样本待恢复图像对应的恢复图像;基于第一训练集对目标退化类型对应的基线模型进行训练,得到目标退化类型对应的目标模型;基于目标退化类型对应的目标模型和基线模型确定关键卷积核;基于第二训练集对基线模型进行训练,更新关键卷积核的参数,得到目标退化类型对应的图像恢复模型。本发明可以提高多种图像恢复任务的图像恢复模型的生成效率。

Patent Agency Ranking