-
公开(公告)号:CN118042133B
公开(公告)日:2024-06-28
申请号:CN202410436958.9
申请日:2024-04-12
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院)
IPC: H04N19/124 , H04N19/174 , H04N19/132 , G06T9/00
Abstract: 本发明公开一种基于切片表达的全景图像编码方法、解码方法及相关装置,涉及全景图像编解码领域,方法包括以下步骤:对获取的待编码全景图像进行超级切片图像转换,得到超级切片图像集合作为全景图像的切片化表达形式,利用切片编码器对超级切片图像集合进行特征提取,得到超级切片编码,进一步生成超级切片编码量化结果和先验编码量化结果,据此确定高斯分布概率模型,并利用该模型生成超级切片编码量化结果的比特流和先验编码量化结果的比特流;而在解码阶段,对超级切片编码量化结果的比特流进行解码,并将解码结果经过反量化以及切片解码后,得到全景重构图像,提高了全景图像表达的稳定性,实现了高性能的全景图像编解码。
-
公开(公告)号:CN118042133A
公开(公告)日:2024-05-14
申请号:CN202410436958.9
申请日:2024-04-12
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院)
IPC: H04N19/124 , H04N19/174 , H04N19/132 , G06T9/00
Abstract: 本发明公开一种基于切片表达的全景图像编码方法、解码方法及相关装置,涉及全景图像编解码领域,方法包括以下步骤:对获取的待编码全景图像进行超级切片图像转换,得到超级切片图像集合作为全景图像的切片化表达形式,利用切片编码器对超级切片图像集合进行特征提取,得到超级切片编码,进一步生成超级切片编码量化结果和先验编码量化结果,据此确定高斯分布概率模型,并利用该模型生成超级切片编码量化结果的比特流和先验编码量化结果的比特流;而在解码阶段,对超级切片编码量化结果的比特流进行解码,并将解码结果经过反量化以及切片解码后,得到全景重构图像,提高了全景图像表达的稳定性,实现了高性能的全景图像编解码。
-