基于持续学习的图像恢复模型生成方法及图像恢复方法

    公开(公告)号:CN117541512A

    公开(公告)日:2024-02-09

    申请号:CN202311664982.X

    申请日:2023-12-05

    Abstract: 本发明提供基于持续学习的图像恢复模型生成方法及图像恢复方法,涉及图像处理技术领域,方法包括:获取目标退化类型对应的基线模型和训练集,训练集包括第一训练集和第二训练集,第一训练集中的训练数据组少于第二训练集中的训练数据组,每个训练数据组中包括样本待恢复图像以及样本待恢复图像对应的恢复图像;基于第一训练集对目标退化类型对应的基线模型进行训练,得到目标退化类型对应的目标模型;基于目标退化类型对应的目标模型和基线模型确定关键卷积核;基于第二训练集对基线模型进行训练,更新关键卷积核的参数,得到目标退化类型对应的图像恢复模型。本发明可以提高多种图像恢复任务的图像恢复模型的生成效率。

Patent Agency Ranking