-
公开(公告)号:CN117824708A
公开(公告)日:2024-04-05
申请号:CN202410006380.3
申请日:2024-01-03
Applicant: 哈尔滨工业大学
IPC: G01C25/00 , G01C19/5691 , G01C19/5776
Abstract: 半球谐振陀螺检测误差在线标定方法,属于惯性技术领域。本发明解决了传统对半球谐振陀螺的检测误差标定是离线进行的,无法克服外界因素对半球谐振陀螺影响,无法对半球谐振陀螺检测回路中X/Y通道增益误差以及失准角实时补偿的问题。本发明利用锁相环生成的余弦参考信号Vc和正弦参考信号Vs分别对预处理后的半球谐振陀螺的X和Y通道检测的振动信号实时进行解调,得到Cx、Cy、Sx和Sy;利用X/Y通道增益比值kyx和失准角α对Cx、Cy、Sx和Sy进行补偿,根据补偿后的Cx、Cy、Sx和Sy生成X通道控制量和Y通道控制量,并将其分别施加在半球谐振陀螺X和Y通道激励电极,从而完成对半球谐振陀螺检测误差的在线自标定。主要用于对半球谐振陀螺在线标定。
-
公开(公告)号:CN117782163A
公开(公告)日:2024-03-29
申请号:CN202311857096.9
申请日:2023-12-29
Applicant: 哈尔滨工业大学
IPC: G01C25/00 , G01C19/5691
Abstract: 基于衰减时间常数的半球谐振陀螺虚拟进动校准方法及系统,属于惯性技术领域,本发明为解决半球谐振陀螺虚拟进动速度随环境温度变化难以实时补偿的问题。本发明方法通过对不同温度下半球谐振子谐振频率与衰减时间常数的精确标定,再利用拟合方法对这些标定数据进行函数拟合。通过此过程,得到了谐振子谐振频率与衰减时间常数的关联模型。随后,本发明通过实时监测环境温度,以标定模型为基础,利用衰减时间常数对虚拟进动控制力进行实时调整,使其进动速度稳定。本发明应用于半球谐振陀螺的启动及校准过程。
-
公开(公告)号:CN115876178A
公开(公告)日:2023-03-31
申请号:CN202211641073.X
申请日:2022-12-19
Applicant: 哈尔滨工业大学
IPC: G01C19/5691 , G01C19/5776 , G01C25/00
Abstract: 平板电极式半球谐振陀螺的检测与驱动切换的控制方法,它属于惯性技术领域。本发明解决了平板电极式半球谐振陀螺检测信号与驱动信号存在串扰以及传统分时控制方法中检测信号不连续的问题。本发明对半球谐振陀螺缓冲电路上设置的多路开关进行高频切换,切换频率远高于谐振子振动频率,以切换频率对振动信号进行采样得到检测信号,在相邻两次采样之间施加驱动信号,使检测信号和驱动信号在时域上分离,消除检测信号中驱动信号的干扰。本发明方法采用与驱动检测切换频率相同的频率进行采样,检测信号为连续采样,只需采用常规数字滤波器即可完成解算。本发明方法可以应用于惯性技术领域。
-
公开(公告)号:CN114858153A
公开(公告)日:2022-08-05
申请号:CN202210364971.9
申请日:2022-04-08
Applicant: 哈尔滨工业大学
IPC: G01C19/5719 , G01C25/00
Abstract: 一种半球谐振陀螺振动状态监测系统及监测方法,它属于半球谐振陀螺振动状态监测技术领域。本发明解决了现有的半球谐振陀螺振动状态监测方式存在振动信息缺失的问题。本发明方法所采取的主要技术方案为:建立包括半球谐振陀螺表头、陀螺控制板卡、转台、转台驱动器、数据采集卡和计算机的半球谐振陀螺振动状态监测系统,转台负责提供角速度输入,陀螺控制板卡负责解算陀螺振动信息并驱动谐振子振动,数据采集卡负责将陀螺振动信号采集到计算机中,计算机负责实时解算出各待监测量,并将其进行显示和保存,以及给转台驱动器发送指令来控制转台。本发明方法可以应用于对半球谐振陀螺振动状态进行监测。
-
公开(公告)号:CN109883415B
公开(公告)日:2021-04-02
申请号:CN201910155827.2
申请日:2019-03-01
Applicant: 哈尔滨工业大学
IPC: G01C21/08
Abstract: 本发明提供了一种基于三角函数拟合的旋转磁场定位方法,涉及导航定位技术领域。本发明所述的基于三角函数拟合的旋转磁场定位方法,包括:设置磁信标,使所述磁信标产生满足预设分布函数的旋转磁场;获取待测目标位置的总磁场强度H0’(t);采用三角函数拟合法得到正弦磁场的强度H’(t);根据所述正弦磁场的强度H’(t)确定所述旋转磁场的旋转面的特征矢量Hcs;根据所述预设分布函数和所述正弦磁场的强度H’(t)确定所述目标位置到所述磁信标中心的距离r,根据所述特征矢量Hcs确定所述目标位置的方位角θ0和俯仰角φ0。本发明所述的基于三角函数拟合的旋转磁场定位方法,抗干扰能力强,定位误差不随时间累积,能够提供精确的定位服务。
-
公开(公告)号:CN111561924A
公开(公告)日:2020-08-21
申请号:CN202010436464.2
申请日:2020-05-21
Applicant: 哈尔滨工业大学
Abstract: 本发明提供了一种磁信标的校正方法及基于旋转磁偶极子的定位方法,涉及信号定位技术领域。本发明所述的磁信标的校正方法,包括:获取磁信标的设定磁矩方向,并根据所述设定磁矩方向设定所述磁信标的驱动电流;获取所述磁信标在三个及以上目标空间点的特征矢量,其中,所述特征矢量包括测量特征矢量和理论特征矢量;根据所述磁信标在三个及以上目标空间点的特征矢量,计算所述测量特征矢量相对于所述理论特征矢量的矫正矩阵。本发明所述的技术方案,通过测量特征矢量和理论特征矢量确定矫正矩阵,应用在对未知点的测量特征矢量的修正上,从而消除磁信标的安装误差,有利于提高磁信标导航精度。
-
公开(公告)号:CN109977584A
公开(公告)日:2019-07-05
申请号:CN201910271751.X
申请日:2019-04-04
Applicant: 哈尔滨工业大学
IPC: G06F17/50
Abstract: 本发明提供了一种基于随机信号的定位方法及装置,涉及信号定位技术领域。本发明所述的基于随机信号的定位方法,根据随机信号的定位原理,建立导航模型的观测量与待测目标位置之间的系统模型,确定所述待测目标位置到所述导航模型的观测量的传递矩阵;引入权重向量,根据所述传递矩阵建立导航模型的信息矩阵;建立目标函数,确定最优的权重向量;重构所述系统模型;确定所述待测目标位置。本发明所述的基于随机信号的定位装置,包括建模模块、矩阵模块、算法模块、重构模块和定位模块。本发明所述的基于随机信号的定位方法及装置,通过遗传算法对随机信号源最优权重的估计,减小定位误差,从而达到提高随机信号导航定位精度的目的。
-
公开(公告)号:CN108827282A
公开(公告)日:2018-11-16
申请号:CN201810584491.7
申请日:2018-06-08
Applicant: 哈尔滨工业大学
IPC: G01C21/04
Abstract: 本发明提供了一种基于模拟退火算法旋转磁信标数字定位方法,属于定位定向方法技术领域。本发明通过模拟退火算法求解目标函数的最小值,进而得到目标所在位置。实际应用时两个通入不同频率正弦电流的线圈产生磁场,通过目标物所放置的磁通门测量所得到的磁场强度信息,再将该磁场强度与标准磁场强度进行比较,得到物体所在的真实位置。本发明可以在一些特殊环境下,特别是在地下、水下、室内、城市或高山峡谷等地区,仍能保证稳定且高精度的定位定向服务,具有装置简单,算法高效合理,定位精度高、穿透性好、不受恶劣天气条件和昼夜变化的直接影响的特点。
-
公开(公告)号:CN108279007A
公开(公告)日:2018-07-13
申请号:CN201810065086.4
申请日:2018-01-23
Applicant: 哈尔滨工业大学
IPC: G01C21/20
Abstract: 本发明公开一种基于随机信号的定位方法及装置,所述定位方法包括:步骤1,建立观测量与位置解算恒等式;步骤2,在所述恒等式中引入误差项;步骤3,确定观测量误差项;步骤4,根据所述的与观测量误差相关的项以及与观测量误差无关的项确定所述观测量误差在位置解算中的比重,确定置信度模型;步骤5,根据所述置信度模型建立卡尔曼滤波器,对所述置信度进行平滑滤波;步骤6,根据随机信号的定位原理,建立导航解算模型,并选择置信度较高的基站信号进行导航解算;所述定位装置与所述定位方法对应。这样,屏蔽低精度随机信号对导航解算的干扰,提高了定位的精度与自适应性,降低了导航解算的计算量。
-
公开(公告)号:CN106625610A
公开(公告)日:2017-05-10
申请号:CN201710098672.4
申请日:2017-02-23
Applicant: 哈尔滨工业大学
IPC: B25J9/00
CPC classification number: B25J9/0069
Abstract: 本发明提供了一种侧立式交叉杆型并联机构六自由度航天器运动仿真平台,属于仿真与空间运动模拟技术领域。所述每个安装支架的上端固定有一个安装面,变长驱动杆的上部和动平台相连接,变长驱动杆的下部和定平台相连接。定平台上的所有定平台虎克铰的中心分布在同一平面圆周上,动平台上的所有动平台虎克铰的中心间隔分布在两个平面圆周上,使六个变长驱动杆呈交叉分布。本发明设计出可侧立应用的大承载高精度运动平台,具有刚度大,运动自由度多、承载能力强、精度高、体积和自重负荷比小等一系列优点,既可作为航天器空间对接对准运动和武器系统瞄准的运动仿真承载平台,也可以满足用户对大型运动系统的物理/半物理仿真的要求。
-
-
-
-
-
-
-
-
-